Crystal Structure of cis-[PtCl2(PyCN)2] (PyCN = 4-Cyanopyridine) Showing Temperature Dependent Single-Crystal-to-Single-Crystal Transformation


Platinum mononuclear complex, cis-[PtCl2(PyCN)2] (1, PyCN = 4-cyanopyridine), has been synthesized and characterized by single-crystal X-ray analysis. Compound 1 crystallizes as yellow plates from the reaction of a mixture of K2PtCl4 and PyCN (=1:2) in H2O, that was left to stand at room temperature with the addition of Me2CO. Compound 1 forms the square-planar coordination geometry around the Pt atom coordinated to two Cl ions and two pyridines of PyCN ligands in cis position. Single crystal of 1 shows the temperature dependent phase transition around 140 K, where the crystal space groups change from P21/c (high temperature) to (low temperature), which is caused by the stabilization of intermolecular interaction.

Share and Cite:

K. Uemura, "Crystal Structure of cis-[PtCl2(PyCN)2] (PyCN = 4-Cyanopyridine) Showing Temperature Dependent Single-Crystal-to-Single-Crystal Transformation," Advances in Materials Physics and Chemistry, Vol. 3 No. 1A, 2013, pp. 36-40. doi: 10.4236/ampc.2013.31A005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Y. Ohashi and Y. Sasada, “X-Ray Analysis of Co-C Bond Cleavage in the Crystalline State,” Nature, Vol. 267, No. 5607, 1977, pp. 142-144. doi:10.1038/267142a0
[2] M. D. Cohen and G. M. J. Schmidt, “Topochemistry. Part I. A Survey,” Journal of the Chemical Society, 1964, pp. 1996-2000. doi:10.1039/jr9640001996
[3] Y. Ohashi, “Dynamical Structure Analysis of Crystalline- State Racemization,” Accounts of Chemical Research, Vol. 21, No. 7, 1988, pp. 268-274. doi:10.1021/ar00151a003
[4] N. Tokitoh, Y. Arai, T. Sasamori, R. Okazaki, S. Nagase, H. Uekusa and Y. Ohashi, “A Unique Crystalline-State Reaction of an Overcrowded Distibene with Molecular Oxygen: The First Example of a Single Crystal to a Single Crystal Reaction with an External Reagent,” Journal of the American Chemical Society, Vol. 120, No. 2, 1998, pp. 433-434. doi:10.1021/ja973295y
[5] T. Hosoya, T. Ohhara, H. Uekusa and Y. Ohashi, “Crystalline-State Photoisomerization of α,β-Unsaturated Thioamide Analyzed by X-Rays,” Bulletin of the Chemical Society of Japan, Vol. 75, No. 10, 2002, pp. 2147-2151. doi:10.1246/bcsj.75.2147
[6] C. Hu and U. Englert, “Crystal-to-Crystal Transformation from a Chain Polymer to a Two-Dimensional Network at Low Temperatures,” Angewandte Chemie International Edition, Vol. 44, No. 15, 2005, pp. 2281-2283. doi:10.1002/anie.200462100
[7] C. Hu and U. Englert, “Space Filling versus Symmetry: Two Consecutive Crystal-to-Crystal Phase Transitions in a 2D Network,” Angewandte Chemie International Edition, Vol. 45, No. 21, 2006, pp. 3457-3459. doi:10.1002/anie.200504460
[8] S. Kitagawa and K. Uemura, “Dynamic Porous Properties of Coordination Polymers Inspired by Hydrogen Bonds,” Chemical Society Reviews, Vol. 34, No. 2, 2005, pp. 109- 119. doi:10.1039/b313997m
[9] K. Uemura, R. Matsuda and S. Kitagawa, “Flexible Microporous Coordination Polymers,” Journal of Solid State Chemistry, Vol. 178, No. 8, 2005, pp. 2420-2429. doi: 10.1016/j.jssc.2005.05.036
[10] J.-A. Real, B. Gallois, T. Granier, F. Suez-Panama and J. Zarembowitch, “Comparative Investigation of the Spin- Crossover Compounds Fe(btz)2(NCS)2 and Fe(phen)2(NCS)2 (Where btz = 2,2'-Bi-4,5-Dihydrothiazine and phen = 1,10-Phenanthroline). Magnetic Properties and Thermal Dilatation Behavior and Crystal Structure of Fe(btz)2 (NCS)2 at 293 and 130 K,” Inorganic Chemistry, Vol. 31, No. 24, 1992, pp. 4972-4979. doi: 10.1021/ic00050a013
[11] T. Granier, B. Gallois, J. Gaultier, J.-A. Real and J. Zarembowitch, “High-Pressure Single-Crystal X-Ray Diffraction Study of Two Spin-Crossover Iron(II) Complexes: Fe(Phen)2(NCS)2 and Fe(Btz)2(NCS)2,” Inorganic Chemistry, Vol. 32, No. 23, 1993, pp. 5305-5312. doi: 10.1021/ic00075a058
[12] Siemens Energy & Automation, Inc., “SMART & SAINT Software Package, version 5.625,” Siemens Energy & Automation, Inc., Madison, 2001.
[13] G. M. Sheldrick, “SADABS, Software for Empirical Absorption Corrections,” University of Göttingen, Göttingen, 1996.
[14] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, “SIR97: A New Tool for Crystal Structure Determination and Refinement,” Journal of Applied Crystallography, Vol. 32, 1999, pp. 115-119. doi:10.1107/S0021889898007717
[15] G. M. Sheldrick, “A Short History of SHELX,” Acta Crystallographica Section A: Foundations of Crystallography, Vol. 64, 2008, pp. 112-122. doi:10.1107/S0108767307043930
[16] C. Kabuto, S. Akine, T. Nemoto and E. Kwon, “Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses,” Journal of the Crystallographic Society of Japan, Vol. 51, No. 3, 2009, pp. 218-224.
[17] G. H. W. Milburn and M. R. Truter, “The Crystal Structures of cis- and trans-Dichlorodiammineplatinum(II),” Journal of the Chemical Society A, Vol. 11, 1966, pp. 1609-1616. doi:10.1039/j19660001609
[18] P. Colamarino and P. L. Orioli, “Crystal and Molecular Structures of cis- and trans-Dichlorobispyridineplatinum (II),” Journal of the Chemical Society Dalton Transactions, Vol. 16-17, 1975, pp. 1656-1659.
[19] M. Kubiak and J. Kuduk-Jaworska, “Structure of cis-Dichlorobis(4-vinylpyridine)platinum(II),” Acta Crystallographica Section C, Vol. 42, No. 12, 1986, pp. 1703-1705. doi:10.1107/S0108270186090868
[20] K. Sakai, Y. Yokoyama and S. Masaoka, “cis-Dichlorobis(4-methylpyridine-kN)platinum(II),” Acta Crystallographica Section E, Vol. 63, 2007, pp. m97-m99. doi:10.1107/S1600536806051610
[21] J. D. S. Martin, L. D. Hunter, R. Kroening and R. F. Coley, “Polarized Crystal Absorption Spectra for Dichloro(ethylenediamine)platinum(II). Evidence for Ionic Exciton States,” Journal of the American Chemical Society, Vol. 93, No. 21, 1971, pp. 5433-5440. doi:10.1021/ja00750a020
[22] S. Nag, K. Banerjee and D. Datta, “Estimation of the van der Waals Radii of the d-Block Elements Using the Concept of Bond Valence,” New Journal of Chemistry, Vol. 31, No. 6, 2007, pp. 832-834. doi:10.1039/b701197k

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.