Share This Article:

Analysis of Sesquiterpene Distributions in the Leaves, Branches, and Trunks of Avocado (Persea americana Mill.)

Abstract Full-Text HTML Download Download as PDF (Size:650KB) PP. 922-931
DOI: 10.4236/ajps.2013.44114    3,501 Downloads   5,884 Views   Citations


Avocado is a commercially valuable fruit crop cultivated in tropical and subtropical climates throughout the world. Taxonomists recognize three horticultural races of avocado, consisting of Mexican (Persea americana var. drymifolia), Guatemalan (P. americana var. guatemalensis), and West Indian (P. americana var. americana) varieties. Published research that attempted to differentiate among the horticultural races by using leaf chemistry found that sesquiterpene content was only useful for discrimination of pure Mexican from Guatemalan and West Indian, but not to distinguish between Guatemalan and West Indian races. This study presents a sampling method for analysis of sesquiterpenes from avocado leaf, branch and trunk samples. Our results indicate that sesquiterpene content from leaves and small diameter branches (<2.5 cm) was highly variable; however, sesquiterpenes were much less variable within wood from larger diameter branches and trunk samples, providing information representative of avocado varietal differences. In addition to chemotaxonomic applications, information on sesquiterpene content of avocado wood is needed for identification of host-based attractants for a new avocado pest, the redbay ambrosia beetle (Xyleborus glabratus). This insect vectors a fungal pathogen that causes laurel wilt, a lethal vascular disease that currently threatens avocado production in south Florida, USA. Females of X. glabratus identify appropriate host trees based on emissions of terpenoids, particularly α-copaene. Our results are discussed in terms of how proximo-distal distributions of sesquiterpenes may function as host-location cues by this invasive wood-boring pest.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Niogret, N. Epsky, E. Schnell, R. Schnell, R. Heath, A. Meerow and P. Kendra, "Analysis of Sesquiterpene Distributions in the Leaves, Branches, and Trunks of Avocado (Persea americana Mill.)," American Journal of Plant Sciences, Vol. 4 No. 4, 2013, pp. 922-931. doi: 10.4236/ajps.2013.44114.


[1] H. Y. Nakasone and R. E. Paull, “Tropical Fruits,” CAB International, Wallingford, 1998.
[2] E. Evans and S. Nalampang, “World, US and Florida Avocado Situation and Outlook,” 2006.
[3] USDA-ARS National Genetic Resources Program, “Germplasm Resources Information Network (GRIN),” National Germplasm Resources Laboratory, Beltsville, 2005.
[4] R. J. Schnell, J. S. Brown, C. T. Olano, E. J. Power and C. A. Krol, “Evaluation of Avocado Germplasm Using Microsatellite Markers,” Journal of the American Society for Horticultural Science, Vol. 128, No. 6, 2003, pp. 881- 889.
[5] W. Popenoe, “Manual of Tropical and Subtropical Fruits,” Macmillan, New York, 1920.
[6] A Ben-Ya’acov, “The Taxonomy of the Avocado: A Proposed New classification of the Persea Sub-genus Persea,” Proceedings of the 3rd World Avocado Congress, Tel Aviv, 22-27 October 1995, p. 75.
[7] S. W. Fraedrich, T. C. Harrington, R. J. Rabaglia, M. D. Ulyshen, A. E. Mayfield III, J. L. Hanula, J. M. Eickwort and D. R. Miller, “A Fungal Symbiont of the Redbay Ambrosia Beetle Causes a Lethal Wilt in Redbay and Other Lauraceae in the Southeastern United States,” Plant Disease, Vol. 92, No. 2, 2008, pp. 215-224. doi:10.1094/PDIS-92-2-0215
[8] T. C. Harrington, S. W. Fraedrich and D. N. Aghayeva, “Raffaelea lauricola, a New Ambrosia Beetle Symbiont and Pathogen on the Lauraceae,” Mycotaxon, Vol. 104, No. 2, 2008, pp. 399-404.
[9] United States Department of Agriculture, Forest Service, Forest Health Protection, Southern Region, “Laurel Wilt Distribution,” 2012.
[10] Florida Department of Agriculture and Consumer Services, “Florida Department of Agriculture and Consumer Services Identifies Laurel Wilt Disease in Avocado Production Area of Miami-Dade County, Press Release 1 May 2012,” 2012.
[11] A. E. Mayfield III, J. E. Peña, J. H. Crane, J. A. Smith, C. L. Branch, E. D. Ottoson and M. Hughes, “Ability of the Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae) to Bore into Young Avocado (Lauraceae) Plants and Transmit the Laurel Wilt Pathogen (Raffaelea sp.),” Florida Entomologist, Vol. 91, No. 3, 2008, pp. 485- 487.
[12] P. E. Kendra, W. S. Montgomery, J. Niogret and N. D. Epsky, “An Uncertain Future for American Lauraceae: A Lethal Threat from Redbay Ambrosia Beetle and Laurel Wilt Disease (A Review),” American Journal of Plant Sciences, Vol. 4, No. 3A, 2013, pp. 727-738. doi:10.4236/ajps.2013.43A092
[13] J. L. Hanula, A. E. Mayfield III, S. W. Fraedrich and R. J. Rabaglia, “Biology and Host Associations of the Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae), Exotic Vector of Laurel Wilt Killing Redbay Trees in the Southeastern United States,” Journal of Economic Entomology, Vol. 101, No. 4, 2008, pp. 1276-1286. doi:10.1603/0022-0493(2008)101[1276:BAHAOR]2.0.CO;2
[14] J. L. Hanula and B. Sullivan, “Manuka Oil and Phoebe Oil Are Attractive Baits for Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), the Vector of Laurel Wilt,” Environmental Entomology, Vol. 37, No. 6, 2008, pp. 1403-1409. doi:10.1603/0046-225X-37.6.1403
[15] P. E. Kendra, W. S. Montgomery, J. Niogret, J. E. Peña, J. L. Capinera, G. Brar, N. D. Epsky and R. R. Heath, “Attraction of the Redbay Ambrosia Beetle, Xyleborus glabratus, to Avocado, Lychee, and Essential Oil Lures,” Journal of Chemical Ecology, Vol. 37, No. 9, 2011, pp. 932-942.
[16] P. E. Kendra, J. Niogret, W. S. Montgomery, J. S. Sanchez, M. A. Deyrup, G. E. Pruett, R. C. Ploetz, N. D. Epsky and R. R. Heath, “Temporal Analysis of Sesquiterpene Emissions from Manuka and Phoebe Oil Lures and Efficacy for Attraction of Xyleborus glabratus (Coleoptera: Curculionidae: Scolyinae),” Journal of Economic Entomology, Vol. 105, No. 2, 2012, pp. 659-669. doi:10.1603/EC11398
[17] N. G. Porter and A. L. Wilkins, “Chemical, Physical and Antimicrobial Properties of Essential Oils of Leptospermum scoparium and Kunzea ericoides,” Phytochemistry, Vol. 50, No. 3, 1998, pp. 407-415. doi:10.1016/S0031-9422(98)00548-2
[18] J. R. King and R. J. Knight, “Occurrence and Assay of Estragole in the Leaves of Various Avocado Cultivars,” Journal of Agricultural and Food Chemistry, Vol. 35, No. 5, 1987, pp. 842-844. doi:10.1021/jf00077a048
[19] J. Crane and M. Mossler, “Crop Profile for Avocados in Florida,” 2008.
[20] R. R. Heath, A. Manukian, N. D. Epsky, J. Sivinski, C. O. Calkins and P. J. Landolt, “A Bioassay System for Collecting Volatiles While Simultaneously Attracting Tephritid Fruit Flies,” Journal of Chemical Ecology, Vol. 19, No. 10, 1993, pp. 2395-2410. doi:10.1007/BF00979673
[21] R. R. Heath and A. Manukian, “Development and Evaluation of Systems to Collect Volatile Semiochemicals from Insects and Plants Using a Charcoal-Infused Medium for Air Purification,” Journal of Chemical Ecology, Vol. 18, No. 7, 1992, pp. 1209-1226. doi:10.1007/BF00980075
[22] D. J. Crook, A. Khrimian, J. A. Francese, I. Fraser, T. M. Poland, A. J. Sawyer and V. C. Mastro, “Development of a Host-Based Semiochemical Lure for Trapping Emerald Ash Borer Agrilus planipennis (Coleoptera: Buprestidae), Environmental Entomology, Vol. 37, No. 2, 2008, pp. 356-365. doi:10.1603/0046-225X(2008)37[356:DOAHSL]2.0.CO;2
[23] SAS Institute, “SAS/STAT Guide for Personal Computers, Version 8.2,” SAS Institute, Cary, 2001.
[24] G. E. P. Box, W. G. Hunter and J. S. Hunter, “Statistics for Experimenters. An Introduction to Design, Data Analysis, and Model Building,” John Wiley & Sons, New York, 1978.
[25] J. H. Zar, “Biostatistical Analysis,” 4th Edition, Prentice Hall, Upper Saddle, 1999.
[26] J. L. Capinera, D. R. Horton, N. D. Epsky and P. L. Chapman, “Effects of Plant Density and Late-Season Defoliation on Yield of Field Beans,” Environmental Entomology, Vol. 16, No. 1, 1987, pp. 274-280.
[27] P. E. Kendra, W. S. Montgomery, D. M. Mateo, H. Puche, N. D. Epsky and R. R. Heath, “Effect of Age on EAG Response and Attraction of Female Anastrepha suspensa (Diptera: Tephritidae) to Ammonia and Carbon Dioxide,” Environmental Entomology, Vol. 34, No. 3, 2005, pp. 584-590. doi:10.1603/0046-225X-34.3.584
[28] J. R. King and R. J. Knight, “Volatile Components of the Leaves of Various Avocado Cultivars,” Journal of Agricultural and Food Chemistry, Vol. 40, No. 7, 1992, pp. 1182-1185. doi:10.1021/jf00019a020
[29] L. Sagrero-Nieves and J. P. Bartley, “Volatile Components of Avocado Leaves (Persea americana Mill.) from the Mexican Race,” Journal of the Science of Food and Agriculture, Vol. 67, No. 1, 1995, pp. 49-51. doi:10.1002/jsfa.2740670109
[30] S. Sinyinda and J. W. Gramshaw, “Volatiles of Avocado Fruit,” Food Chemistry, Vol. 62, No. 4, 1998, pp. 483- 487. doi:10.1016/S0308-8146(97)00190-8
[31] S. N. Azizi and S. Najafzadeh, “Fatty Acids and Volatile Compounds in Avocado Cultivated in North of Iran,” World Applied Sciences Journal, Vol. 5, No. 1, 2008, pp. 1-4.
[32] A. Ortiz Moreno, L. Dorantes, J. Galídez and R. I. Guzmán, “Effect of Different Extraction Methods on Fatty Acids, Volatile Compounds, and Physical and Chemical Properties of Avocado (Persea americana Mill.) Oil,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 8, 2003, pp. 2216-2221. doi:10.1021/jf0207934
[33] A. E. Bravo-Monzón and F. J. Espinosa-García, “Volatile Emissions in Persea americana in Response to the Stem Borer Copturus agacatae Attack,” Allelopathy Journal, Vol. 21, No. 1, 2008, pp. 165-173.
[34] J. Niogret, P. E. Kendra, N. D. Epsky and R. R. Heath, “Comparative Analysis of Terpenoid Emissions from Florida Host Trees of the Redbay Ambrosia Beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae),” Florida Entomologist, Vol. 94, No. 4, 2011, pp. 1010-1017. doi:10.1653/024.094.0439
[35] P. E. Kendra, W. S. Montgomery, J. Niogret, M. A. Deyrup, L. Guillén and N. D. Epsky, “Xyleborus glabratus, X. affinis, and X. ferrugineus (Coleoptera: Curculionidae: Scolytinae): Electroantennogram Responses to Host-Based Attractants and Temporal Patterns in Host- Seeking Flight,” Environmental Entomology, Vol. 41, No. 6, 2012, pp. 1597-1605. doi:10.1603/EN12164

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.