Rapid Transport of Biomolecules along Frictionless Wavy-Rough Interfaces


There are many types of almost frictionless and very rapid flows of complex molecules in nature. One example is the almost frictionless nature of the protein channel aquaporin-1. Nearly frictionless transport of complex biomolecular fluids along a membrane composed of wavy-rough nanoannuli was investigated by using the verified Eyrings transition-state approach (cf. Journal of Physical Chemistry B, Vol. 112, 2008, pp. 3019-3023.), together with a boundary perturbation approach, which has been successfully adopted to study the selective transport of polymeric matter in confined nanodomains. The critical parameters related to the rapid or nearly frictionless transport of biomolecules were identified to be directly relevant to the possible phase-transition temperature after selecting specific activation energies and activation volumes for fixed confined (cylindrical) geometry as well as small wavy corrugations along the interface. Our results can also make the membrane composed of aligned wavy-rough nanotubes a promising mimic of protein channels for transdermal drug delivery and selective chemical sensing.

Share and Cite:

K. Chu, "Rapid Transport of Biomolecules along Frictionless Wavy-Rough Interfaces," Open Journal of Biophysics, Vol. 3 No. 2, 2013, pp. 128-132. doi: 10.4236/ojbiphy.2013.32016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Majumder, N. Chopra, R. Andrews and B. J. Hinds, “Nanoscale Hydrodynamics-Enhanced Flow in Carbon Nanotubes,” Nature (London), Vol. 438, No. 44, 2005, p. 930. doi:10.1038/438930b
[2] G. Hummer, J. C. Rasaiah and J. P. Noworyta, “Water Conduction through the Hydrophobic Channel of a Carbon Nanotube,” Nature (London), Vol. 414, 2001, pp. 188-190. doi:10.1038/35102535
[3] P. R. Waggoner and H. Maisel, “Immunofluorescent Study of a Chick Lens Fiber Cell Membrane Polypeptide,” Experimental Eye Research, Vol. 27, No. 2, 1978, pp. 151-157. doi:10.1016/0014-4835(78)90085-4
[4] M. B. Gorin, S. B. Yancey, J. Cline, J. P. Revel and J. Horwitz, “The Major Intrinsic Protein (MIP) of the Bovine Lens Fiber Membrane: Characterization and Structure Based on cDNA Cloning,” Cell, Vol. 39, No. 1, 1984, pp. 49-59. doi:10.1016/0092-8674(84)90190-9
[5] M. L. Zeidel, S. V. Ambudkar, B. L. Smith and P. Agre, “Reconstitution of Functional Water Channels in Liposomes Containing Purified Red-Cell CHIP28 Protein,” Biochemistry, Vol. 31, No. 33, 1992, pp. 7436-7440. doi:10.1021/bi00148a002
[6] K. Balasubramanian and M. Burghard, “Chemically Functionalized Carbon Nanotubes,” Small, Vol. 1, No. 2, 2005, pp. 180-186. doi:10.1002/smll.200400118
[7] W. K.-H. Chu, “Stokes Slip Flows between Corrugated Walls,” Zeitschrift für Angewandte Mathematik und Physik, Vol. 47, No. 4, 1996, pp. 591-599. doi:10.1007/BF00914873
[8] F. H. Johnson, H. Eyring and B. J. Stover, “The Theory of Rate Processes in Biology and Medicine,” Wiley, New York, 1974.
[9] K.-H. W. Chu, “Sieving Transport within Wavy-Rough Nanoannuli,” Journal of Physical Chemistry B, Vol. 112, No. 10, 2008, pp. 3019-3023. doi:10.1021/jp076114f
[10] J. K. Holt, “Methods for Probing Water at the Nanoscale,” Microfluidics and Nanofluidics, Vol. 5, 2008, pp. 425-442.
[11] C. L. M. H. Navier, “Mémoire sur les lois du Mouvement des Fluides,” Mémoires de l’Académie Royale des Sciences de l’Institut de France, 1823, pp. 389-440.
[12] P. A. Thompson and S. M. Troian, “A General Boundary Condition for Liquid Flow at Solid Surfaces,” Nature (London), Vol. 389, 1997, pp. 360-363. doi:10.1038/39475
[13] R. H. Ewell and H. Eyring, “Theory of the Viscosity of Liquids as a Function of Temperature and Pressure,” Journal of Chemical Physics, Vol. 5, No. 9, 1937, p. 726. doi:10.1063/1.1750108
[14] M. J. Daniels and M. Yeager, “Phosphorylation of Aquaporin PvTIP3;1 Defined by Mass Spectrometry and Molecular Modeling,” Biochemistry, Vol. 44, No. 44, 2005, pp. 14443-14454. doi:10.1021/bi050565d
[15] G. M. Preston, B. L. Smith, M. L. Zeidel, J. J. Moulds and P. Agre, “Mutations in Aquaporin-1 in Phenotypically Normal Humans without Functional CHIP Water Channels,” Science, Vol. 256, No. 5055, 1992, pp. 385- 387. doi:10.1126/science.256.5055.385
[16] D. Fu, A. Libson, L. J. W. Miercke, C. Weitzman, P. Nollert, J. Krucinski and R. M. Stroud, “Structure of a Glycerolconducting Channel and the Basis for Its Selectivity,” Science, Vol. 290, No. 5491, 2000, pp. 481-486. doi:10.1126/science.290.5491.481
[17] K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J. B. Heymann, A. Engel and Y. Fujiyoshi, “Structural Determinants of Water Permeation through Aquaporin-1,” Nature, Vol. 407, 2000, pp. 599-605. doi:10.1038/35036519
[18] H. Sui, B.-G. Han, J. K. Lee, P. Walian and B. K. Jap, “Structural Basis of Water-Specific Transport through the AQP1 Water Channel,” Nature, Vol. 414, 2001, pp. 872- 877. doi:10.1038/414872a
[19] G. M. Pao, L. F. Wu, K. D. Johnson, H. Hofte, M. J. Chrispeels, G. Sweet, N. N. Sandal and M. H. Saier, “Evolution of the MIP Family of Integral Membrane Transport Proteins,” Molecular Microbiology, Vol. 5, No. 1, 1991, pp. 33-37. doi:10.1111/j.1365-2958.1991.tb01823.x
[20] F. Le Cahérec, S. Deschamps, C. Delamarche, I. Pellerin, G. Bonnec, M. T. Guillam, D. Thomas, J. Gouranton and J. F. Hubert, “Molecular Cloning and Characterization of an Insect Aquaporin: Functional Comparison with Aquaporin 1,” European Journal of Biochemistry, Vol. 241, No. 3, 1996, pp. 707-715. doi:10.1111/j.1432-1033.1996.00707.x
[21] J. H. Park and M. H. Saier, “Phylogenetic Characterization of the MIP Family of Transmembrane Channel Proteins,” Journal of Membrane Biology, Vol. 153, No. 3, 1996, pp. 171-180. doi:10.1007/s002329900120
[22] P. Agre, S. Sasaki and M. J. Chrispeels, “Aquaporins: A Family of Water Channel proteins,” American Journal of Physiology, Vol. 265, 1993, p. F461.
[23] M. J. Chrispeels and P. Agre, “Aquaporins: Water Channel Proteins of Plant and Animal Cells,” Trends in Biochemical Sciences, Vol. 19, No. 10, 1993, pp. 421-425. doi:10.1016/0968-0004(94)90091-4
[24] C. Maurel, “Aquaporins and Water Permeability of Plant Membranes,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 48, 1997, pp. 399-429. doi:10.1146/annurev.arplant.48.1.399
[25] S. Tornroth-Horsefield, K. Hedfalk, G. Fischer, K. Lindkvist-Peterssonb and R. Neutze, “Structural Insights into Eukaryotic Aquaporin Regulation,” FEBS Letters, Vol. 584, No. 12, 2010, pp. 2580-2588. doi:10.1016/j.febslet.2010.04.037
[26] R. Chaube, F. Chauvigné, A. Tingaud-Sequeira, K. P. Joy, A. Acharjee, V. Singh and J. Cerdá, “Molecular and Functional Characterization of Catfish (Heteropneustes fossilis) Aquaporin-1b: Changes in Expression during Ovarian Development and Hormone-Induced Follicular Maturation,” General and Comparative Endocrinology, Vol. 170, No. 1, 2011, pp. 162-171. doi:10.1016/j.ygcen.2010.10.002
[27] M. Kaakinen, S. Zelenin and K. Metsikko, “Aquaporin-4 Water Channel Oligomers Are Associated with the Transverse Tubules of Skeletal Myofibers,” Experimental Cell Research, Vol. 317, No. 1, 2011, pp. 20-28. doi:10.1016/j.yexcr.2010.09.004
[28] Y. Hirano, N. Okimoto, I. Kadohira, M. Suematsu, K. Yasuoka and M. Yasui, “Molecular Mechanisms of How Mercury Inhibits Water. Permeation through Aquaporin-1: Understanding by Molecular Dynamics Simulation,” Bio- physical Journal, Vol. 98, No. 8, 2010, pp. 1512-1519. doi:10.1016/j.bpj.2009.12.4310
[29] B. X. Yang, A. N. van Hoek and A. S. Verkman, “Very High Single Channel Water Permeability of Aquaporin-4 in Baculovirus-Infected. Insect Cells and Liposomes Reconstituted with Purified Aquaporin-4,” Biochemistry, Vol. 36, No. 24, 1997, pp. 7625-7632. doi:10.1021/bi970231r

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.