Water—A Key Substance to Comprehension of Stimuli-Responsive Hydrated Reticular Systems

Abstract

Thermo-responsive hydrated macro-, micro- and submicro-reticular systems (TRHRS), particularly polymers forming hydrogels or similar networks, have attracted extensive interest because comprise biomaterials, smart or intelligent materials. Phase transition temperature (LCST or UCST, i.e. low or upper critical solution temperature, respectively) at about the TRHRS exhibiting a unique hydration-dehydration change is a typical characteristic. The characterization and division of the TRHRS are described followed by explanation of their behaviour. The presented original explanation is based on merely combination of basic thermodynamical state of individual useful macromolecule chains (long-chain or coil) with inter- and intra-mutual action of attractive and repulsive intramolecular hydration forces among them being strongly dependent upon temperature. Acquainted with this piece of knowledge, a theoretical concept of really biological systems movement, e.g. muscle tissues or artificial muscle etc., can be formulated.

Share and Cite:

M. Milichovsky, "Water—A Key Substance to Comprehension of Stimuli-Responsive Hydrated Reticular Systems," Journal of Biomaterials and Nanobiotechnology, Vol. 1 No. 1, 2010, pp. 17-30. doi: 10.4236/jbnb.2010.11003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. Martín, M. Alonso, A. Girotti, F. J. Arias and J. C. Rodríguez-Cabello, “Synthesis and characterization of macroporous thermosensitive hydrogels from recombinan elastin-like polymers,” Biomacromolecules, Vol. 10, No. 11, 2009, pp. 3015-3022.
[2] A. Girotti, J. C. Reguera, F. J. Rodríguez-Cabello, M. Arias, A. Alonso and J. MaTestera, “Design and bioproduction of a recombinanat multi(bio)functional elastin- like protein polymer containing cell adhesion sequences for tissue engineering purposes,” Journal of Matierals Science, Materials in Medicine, Vol. 15, 2004, pp. 479-484.
[3] J. E. Wong, A. K. Gaharvar, D. Müller-Schulte, D. Bahadur and W. Richtering, “Dual-stimuli responsive PNiPAM microgel achieved via layer-by layer assembly: magnetic and thermoresponsive,” Journal of Colloid and Interface Science, Vol. 324, 2008, pp. 47-54.
[4] K. L. Fujimoto, M. Zuwei, D. M. Nelson, R. Hashizume, J. Guan, K. Tobita and W. R.Wagner, “Synthesis, charac- terization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardum,” Biomaterials, Vol. 30, 2009, pp. 4357-4368.
[5] J. Xiao-Jie, C. Liang-Yin, L. Li, M. Peng and M. L. Young, “A Novel Thermoresponsive hydrogel with ion- recognition property through supramolecular host-guest complexation,” Journal of Physical Chemistry B, Vol. 112, 2008, pp. 1112-1118.
[6] J. J. Kang Derwent and W. F. Mieler, “Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye,” Transactions of the Ame- rican Ophthalmological Society, Vol. 106, 2008, pp. 206- 214.
[7] Y. H. Bae, R. Okano, S. Hsu, W. Kim, “Thermo-sensitive polymers as on-off switches for drug release,” Makromol. Chem. Rapid Commun., No. 8, 1987, pp. 481-485.
[8] D. Ghate and H. F. Edelhause, “Ocular Drug Delivery,” Expert Opinion on Drug Delivery, No. 3, 2006, pp. 275- 287.
[9] T. Yasukawa, Y. Ogura, H. Kimura, E. Sakurai and Y. Tabata, “Drug delivery from ocular implants,” Expert Opinion on Drug Delivery, No. 3, 2006, pp. 261-273.
[10] S. E. Stabenfeldt, A. J. García and M. C. LaPlaca, “Ther- moreversible laminin-functionalized hydrogel for tissue engineering,” Journal of Biomedical Materials Research Part A, 2006, pp. 718-725.
[11] K. E. Crompton, J. D. Goud, R. V. Bellamkonda, T. R. Gengenbachm, D. I. Finkelstein, M. K. Horne and J. S. Forsytie, “Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering,” Bioma- terials, Vol. 28, 2007, pp. 441-449.
[12] K. Shanmuganathan, J. R. Capadona, S. J. Rowan and Chr. Weder, “Stimuli-responsive mechanically adaptive polymer nanocomposites,” Applied Materials & Inter- faces, Vol. 2, No. 1, 2010, pp. 165-174.
[13] F. Xia, H. Ge, Y. Hou, T. L. Sun, L. Chen, G. Z. Zhang and L. Jiang, “Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity,” Advanced Material, Vol.19, 2007, pp. 2520-2524.
[14] L. Qiaofang, L. Pengxiao, G. Ying, Zh. Yongjun, “Thermally induced phase transition of glucose-sensitive core-shell microgels,” Applied Materials & Interfaces, March 2010.
[15] F. D. Jochum and P. Theato, “Temperature and light- responsive polyacrylamides prepared by a double polymer analogous reaction of activated ester polymers,” Ma- cromolecules, Vol. 42, 2009, pp. 5941-5945.
[16] J. H. Kang, J. H. Moon S. K. Lee, S. G. Park, S. G. Jang, S. Yang and S. M. Yang, “Thermoresponsive hydrogel photonic crystals by three-dimensional holographic litho- graphy,” Advanced Material, Vol. 20, 2008, pp. 3061- 3065.
[17] J. F. Mano, “Stimuli-responsive polymeric systems for biomedical applications,” Advanced Engineering Materials, Vol. 10, No. 6, 2008, pp. 515-527.
[18] M. Yoshida, R. Langer, A. Lendlein and J. Lahan, “From advanced biomedical coatings to multi-functionalized biomaterials,” J. Macrom. Sci., Part C: Polymer reviews, Vol. 46, 2006, pp. 347-3756.
[19] G. Santaneel, N. Arup, C. Yang, T. Cai, Somesree GhoshMitra, D. Diercks and H. Zhibing, “Thermoresponsive Hydrogel Microvalve Based on Magnetic Nanoheaters for Microfluidics,” In: J. Cheng, A. Khademhosseini, H.-Q. Mao, M.Stevens and C. Wang, Eds., Responsive Biomaterials for Biomedical Applications, Mater. Res. Soc. Symp. Proc., Warrendale, PA, 2008, Vol. 1095E.
[20] D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss and B.-H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature, Vol. 404, 2000, pp. 588-590.
[21] N. Idota, A. Kikuchi, J. Kobayashi, K. Sakai and T. Okano, “Microfluidic valves comprising nanolayered thermoresponsive polymer-grafted capillaries,” Advanced Material, Vol. 17, 2005, pp. 2723-2727.
[22] H. Yang, Y.-H. Han, X.-W. Zhao, K. Nagai and Z.-Z Gu, “Thermal responsive microlens arrays, ”Appl. Phys. Lett., Vol. 89, 2006, pp. 111-121.
[23] D. Chandra, J. A. Taylor and S. Yang, “Replica molding of high-aspect-ratio (sub) micron hydrogel pillar arrays and their stability in air and solvents,” Softmatter, Vol. 4, 2008, pp. 979-984.
[24] M. E. Harmon, M. Tang and C. W. Frank, “A micro- fluidic actuator based on thermoresponsive hydrogels,” Polymer, Vol. 44, 2003, pp. 4547-4556.
[25] J. Kim, S. Yun and Z. Ounaies, “Discovery of cellulose as a smart material,” Macromolecules, Vol. 39, 2006, pp. 4202-4206.
[26] P. M. Mendes, “Stimuli-responsive surfaces for bioapli- cations,” Chem. Soc. Rev., Vol. 37, 2008, pp. 2512-2529.
[27] H. Kanazawa, K. Yamamoto, Y. Matsushima, N. Takai, A. Kikuchi and Y. Sakurai, “Temperature-responsive chromatography using poly (N- isopropylacrylamide)- modified silica,” Anal. Chem., Vol. 68, No. 1, 1996, pp. 100-105.
[28] H. Kanazawa, Y. Matsushima, T. Okano, “Temperature- responsive chromatography,” Adv. Chromatogr., Vol. 41, 2001, pp. 311-336.
[29] A. Kikuchi and T. Okano, “Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds,” Prog. Polym. Sci., Vol. 27, 2002, pp. 1165-1193.
[30] H. Kanazawa, T. Sunamoto, Y. Matsushima, A. Kikuchi and T. Okano, “Temperature-responsive chromatographic separation of amino acid phenylthiohydantions using aqueous media as the mobile phase,” Anal. Chem., Vol. 72, 2000, pp. 5961-5966.
[31] H. Kanazawa, K. Yamamoto, Y. Y. Kashiwase, Y. Matsushima, N. Takai, A. Kikuchi, Y. Sakurai and T. Okano, “Analysis of peptides and proteins by temperature-res- ponsive chromatographic system using N-isopropylacry- laide polymer-modified columns,” J. Pharm. Biomed. Anal., Vol. 15, 1997, pp. 1545-1550.
[32] M. Gewehr, K. Nakamura, N. Ise and H. Kitano, “Gel permeation chromatography using porous glass beads modified with temperature-responsive polymers,” Makro- molekulare Chemie, Vol. 193, 1992, pp. 249-256.
[33] K. Hosoya, E. Sawada, K. Kimata, T. Araki, N. Tanaka and J. M. J. Frechet, “In situ surface selective modi- fication of uniform size macroporous polymer particles with temperature-responsive poly-n-isopropylacrylamide,” Ma- cromolecules, Vol. 27, 1994, pp. 3973-3976.
[34] H. Kanazawa, Y. Kashiwase, K. Yamamoto, Y. Matsu- shima, A. Kikuchi, Y. Sakurai and T. Okano, “Temperature-responsive liquid chromatography. 2. Effects of hydrophobic groups in N-isopropylacrylamide copolymer-modified silica,” Anal. Chem., Vol. 69, 1997, pp. 823-830.
[35] H. Lakhiari, T. Okano, N. Nurdin, C. Luthi, P. Descouts, D. Muller and J. Jozefonvicz, “Temperature-responsive size-exclusion chromatography using poly(N-isopropy- lacrylamide) grafted silica,” Biochim. Biophys. Acta, Vol. 1379, 1998, pp. 303-313.
[36] H. Kanazawa, T. Sunamoto, E. Ayano, Y. Matsushima, A. Kikuchi and T. Okano, “Temperature-responsive chroma- tography using poly(N-isopropylacrylamide) hydrogel- modified silica,” Anal. Sci., Vol. 18, 2002, pp. 45-48.
[37] E. Ayano, Y. Okada, C. Sakamoto, H. Kanazawa, T. Okano, M. Ando and T. Nishimura, “Analysis of herbi- cides in water usingtemperature-responsive chromato- graphy and an aqueous mobile phase,” J. Chromatogr. A, Vol. 1069, 2005, pp. 281-285.
[38] M. Lutecki, B. Strachotova, M. Uchman, J. Brus, J. Plestil, M. Slouf, A. Strachota and L. Matejka, “Thermosensitive PNIPA-Based Organic-Inorganic Hydrogels,” Polym. J., Vol. 38, No. 6, 2006, pp. 527-541.
[39] X.-Z. Zhang, F.-J. Wang, C. C. Chu, “Thermoresponsive Hydrogel with Rapid Response dynamics,” J. Mat. Sci., Materials in Medicine, Vol. 14, 2003, pp. 451-455.
[40] H. Hou, W. Kim, M. Grunlan and A. Han, “A thermo- responsive hydrogel poly (N-isopropylacrylamide) micropatterning method using microfliudic techniques,” J. Micromech. Microeng, Vol. 19, 2009, pp. 1-6, 2009.
[41] R. M. P. da Silva, J. F. Mano and R. L. Reis, “Smart thermoresponsive coatings and surfaces for tissue engi- neering: switching cell-material boundaries,” Trends in Biotechnology, Vol. 25, No. 12, 2006, pp. 577-583.
[42] H. Hatakeyma, A. Kichuchi, M. Yamato and T. Okano, “Bio-functionalized thermoresponsive interfaces facili- tating cell adhesion and proliferation,” Biomaterials, Vol. 27, 2006, pp. 5069-5078.
[43] X. Xin-Cai, Ch. Liang-Yin, Ch. Sen-Mei, Z. Jia-Hua, “Monodispersed thermoresponsive hydrogel microspheres with a volume phase transition driven by hydrogen bonding,” Polymer, Vol. 46, 2005, pp. 3199-3209.
[44] J. Shi, N. M. Alves and J. F. Mano, “Thermally responsive biomineralization on biodegradable substrates,” Adv. Funct. Mater., Vol. 17, 2007, pp. 3312-3318, 2007.
[45] Z. Ding, R. B. Fong, C. J. Long, P. S. Stayton and A. S. Hoffman, “Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield,” Nature, Vol. 411, 2001, pp. 59-62.
[46] S. Ohya, Y. Nakayama and T. Matsuda, “Thermorespon- sive artificial extracellular matrix for tissue engineering: hyaluronic acid bioconjugated with poly-(N-isopropy- lacrylamide)grafts,” Biomacromolecules, Vol. 2, 2001, pp. 856-63.
[47] S. Ohya and T. Matsuda, “Poly (N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three- dimensional artificial extracellular matrix: molecular and formulation parameters vs. cell proliferation potential,” In: Polym. Ed., J. Biomater. Sci. Vol. 16, 2005, pp. 809-827.
[48] J. A. Jaber and J. B. Schlenoff, “Polyelectrolyte multi- layers with reversible thermal responsivity,” Macromolecules, Vol. 38, 2005, pp. 1300-1326.
[49] S. A. Sukhishvili, “Responsive polymer films and cap- sules via layer-by-layer assembly,” Current Opinion in Colloid & Interface Science, Vol. 10, 2005, pp. 37-44.
[50] K. Edelmann, “Lehrbuch der Kolloidchemie,” Band I. VEB Deutscher Verlag der Wissenschaften, Berlin, 1962, pp. 353-358.
[51] M. Milichovsky, “Behaviour of hydrophilic components in papermaking suspension. Part II. Experimental hydrated hydrophilic modeling system – Its properties and behaviour,” Scientific Papers, University of Pardubice, Vol. 56, 1992, pp. 155-182.
[52] M. Milichovsky, “A new concept of chemistry refining processes,” TAPPI J., Vol. 73, No. 10, 1990, pp. 221-232.
[53] M. Milichovsky, “The role of hydration in papermaking suspension,” Cellulose Chem. Technol., Vol. 26, No. 5, 1992, pp. 607-618.
[54] M. Milichovsky, “O mechanizme vzaimodejstvij v buma- goobrazujustschich gidrofilnych sistemach,” Chimija Dre- vesiny, No. 1, 1990, pp. 69-78.
[55] M. Milichovsky, “Chemische Aspekte der Mahlung von Zellstoff,” Zellstoff und Papier, Vol. 38, No. 1, 1989, pp. 17-23.
[56] M. Milichovsky, “Nowe poglady na wlasciwosci papier- niczy zawiesin wodnych,” Przeglad Papierniczy, Vol. 46, No. 12, 1990, pp. 418-422.
[57] M. Milichovsky, “Klí?ová role vody p?i vyrobě a u?ití papíru a papírenskych vyrobk? (Water as Key Substance in Production and Utilisation of Paper Products),” Papír a celulóza, Vol. 55, No.11, 2000, pp. 302-308, 2000.
[58] M. Milichovsky, “Voda – klí?ovy fenomén p?i vyrobě a u?ití papíru a papírenskych vyrobk? (Water – the Key Phenomenon in Production and Utilisation of Paper Products),” Chemické listy, Vol. 94, No. 9, 2000, pp. 875-878.
[59] M. Milichovsky, “Zp?sob děj? a jejich hodnocení probíhajících v papírenskych suspenzích (Evaluation of phenomena taking place in paper suspension),” Papír a celulóza, Vol. 33, No. 7-8, 1978, pp.V61-V64, 1978.
[60] M. Milichovsky and B?. ?e?ek, “Rheosedimentation – typical and characteristic phenomenon of paper matter,” Cellulose Chem. Technol., Vol. 38, No. 5-6, 2004, pp. 385-397.
[61] M. Fi?erová, J. Gigac and J. Balber?ák, “Sedimentation properties of hardwood kraft pulp suspensions,” Papír a celulóza, Vol. 64, No. 11-12, 2009, pp.362-364.
[62] M. Milichovsky, “Behaviour of hydrophilic components in papermaking suspension. Part I. Interactions among hydrated particles – Theory of structural changes in hydrated layers,” Scientific Papers, University of Pardubice, Vol. 56, 1992, pp. 123-154.
[63] M. Milichovsky, “Teorie chování hydrofilních dis- perzních soustav III (Theory of behaviour of hydrophilich dispersion systems III. Experimental evidence of SCHL theory),” Scientific Papers, University of Pardubice, Vol. 51, 1988, pp. 149-168.
[64] B. Menaa, F. Menaa, C. Aiolfi-Guimaraes and O. Sharts, “Silica-based nanoporous sol-gel glasses: from bioenca- psulation to protein folding studies,” International Journal of Nanotechnology, Vol. 7, No. 1, 2010, pp.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.