Effect of Stacking Fault Energy on the Mechanism of Texture Formation during Alternating Bending of FCC Metals and Alloys


Alternating bending shear stresses lead to the formation of twin orientations in the texture of FCC materials with middle and low stacking fault energy (SFE). Only in the stainless steel with a low SFE during alternating bending with different number of cycles components of shear texture {111}; {hkl}<110>; {001}<110> were formed. Copper (middle SFE), along with orientations of twinning and cubic texture formed orientation of deformation {135}<211>. During alternating bending of aluminum (high SFE), a dynamic recovery occurred. The share of initial cubic texture increases with the increase of number of cycles of alternating bending and reaches its maximum after three cycles. Share of component of texture Goss increased slightly. The most significant change of the microstructure and texture occurred during the first 3 - 5 cycles

Share and Cite:

Shkatulyak, N. (2013) Effect of Stacking Fault Energy on the Mechanism of Texture Formation during Alternating Bending of FCC Metals and Alloys. International Journal of Nonferrous Metallurgy, 2, 35-40. doi: 10.4236/ijnm.2013.22005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. M. Mao, “Influence of Rolling Reduction on Recrystallization Texture in Commercially Pure Al,” Journal of Materials Science & Technology, Vol. 6, No. 4. 1990, pp. 257-262. http://www.jmst.org/EN/abstract/abstract15490.shtml
[2] F. J. Humphreys and M. Hatherly, “Recrystallisation and Related Annealing Phenomena,” Elsevier, Oxford, 2004, 628 p.
[3] N. M. Shkatulyak and N. P. Pravedna, “Effect of Alternating Bending at the Texture, Structure and Mechanical Properties of Aluminum Sheets,” Metallovedenie i Termicheskaja Obrabotka Metallov, Vol. 34, No. 2, 2012, p. 209 (in Russian).
[4] Y. D. Vishnyakov, A. A. Babareko, S. A. Vladimirov and I. V. Egiz, “Teoriya Obrazovaniya Tekstur v Metallakh i Splavakh (Texture Formation Theory in Metals and Alloys),” Nauka, Moscow, 1979, 343 p (in Russian).
[5] N. M. Shkatulyak, A. A. Bryukhanov, M. Rodman, V. V. Usov, M. Schaper, G. Haferkamp and V. A. Nastasyuk, “Reverse Bending Effect on the Texture, Structure, and Mechanical Properties of Sheet Copper,” The Physics of Metals and Metallography, Vol. 113, No. 8, 2012, pp. 810-816. doi:10.1134/S0031918X1208011X
[6] C. A. Verbraak, “The Formation of Cube Recrystallization Textures by 112 Slip,” Acta Metallurgica, Vol. 6, No. 9, 1958, pp. 580-597. doi:10.1016/0001-6160(58)90100-7
[7] W. F. Hellerph, C. A. Verbraaks and B. H. Kolster, “Re crystallization at Grain Boundaries in Deformed Copper Bicrystals,” Acta Metallurgica, Vol. 32, No. 9, 1984, pp. 1395-1406. doi:10.1016/0001-6160(84)90085-3
[8] T. Kamijo “Study on the Inverse Rowland Mechanism for the Nucleation of a Cube Recrystallization Texture,” Journal of the Japan Institute of Metals, Vol. 31, No. 6, 1967, pp. 741-746. http://www.jim.or.jp/journal/j/31/06/741-746.html
[9] W. Mao, “Formation of Recrystallization Cube Texture in High Purity Face-Centered Cubic Metal Sheets,” Journal of Materials Engineering and Performance, Vol. 8, No. 5, 1999, pp. 556-560. doi:10.1007/s11665-999-0009-3
[10] K. Sztwiertnia, “Orientation Aspects of the Recrystalliza tion Nucleation in Highly Deformed Polycrystalline Copper,” Materials Science Forum, Vol. 467-470, 2004, pp. 99-106. doi:10.4028/www.scientific.net/MSF.467-470.99
[11] M. Sindel, G. D. Kohlhoff, K. Lücke and B. J. Duggan, “Development of Cube Texture in Coarse Grained Cop per,” Textures and Microstructures, Vol. 12, No. 1-3, 1990, pp. 37-46. doi:10.1155/TSM.12.37
[12] C. D. Singh, V. Ramaswamy and C. Suryanarayana, “Development of Rolling Textures in an Austenitic Stain less Steel,” Textures and Microstructures, Vol. 19, No. 1 2, 1992, pp. 101-121. doi:10.1155/TSM.19.101
[13] C. D. Singh, “On the Development of the Brass-Type Texture in Austenitic Stainless Steel,” Textures and Microstructures, Vol. 22, No. 1, 1993, pp. 59-72. doi:10.1155/TSM.22.59
[14] G. R. Canova, U. F. Kocks and J. J. Jonas, “Theory of Torsion Texture Development,” Acta metal., Vol. 32, No. 2, 1984, pp. 211-226. doi:10.1016/0001-6160(84)90050-6
[15] E. B. Tadmor and N. Bernstein, “A First-Principles Measure for the Twinnability of FCC Metals,” Journal of the Mechanics and Physics of Solids, Vol. 52, No. 11, 2004, pp. 2507-2519. doi:10.1016/j.jmps.2004.05.002
[16] L. E. Murr, “Interfacial Phenomena in Metals and Alloys”. Addison-Wesley Pub. Co., 1975. 376 p.
[17] J. A. Venables, “The Electron Microscopy of Deformation Twinning,” Journal of Physics and Chemistry Solids, Vol. 25, No. 7, 1964, pp. 685-690. doi:10.1016/0022-3697(64)90177-5
[18] Y. H. Zhao, X. Z. Liao, Y. T. Zhu, Z. Horita and T. G. Langdon, “Influence of Stacking Fault Energy on Nanostructure Formation under High Pressure Torsion,” Materials Science and Engineering: A, Vol. 410-411, 2005, pp. 188-193. doi:10.1016/j.msea.2005.08.074
[19] G. R. E. Schramm and R. P. Reed, “Stacking Fault Energies of Austenitic Stainless Steels,” Metallurgical Trans actions A, Vol. 6, No. 7, 1974, pp. 1345-1351. doi:10.1007/BF02641927
[20] E. Totten and D. S. Mackenzie, “Handbook of Aluminum: Alloy Production and Materials Manufacturing,” Marcel Dekker Inc., New York, Basel, 2003.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.