Detection of Influenza Viruses Attached to an Optical Disk


Detection of polystyrene beads with a diameter of 100 nm was conducted using an optical disk drive tester equipped with a laser of 405 nm wavelength and an objective lens with a numerical aperture of 0.65. The polystyrene beads were used to mimic the influenza virus. A grooved disk with a (ZnS)85(SiO2)15/SiO2 layered surface structure was used for the detection. The detection of influenza viruses (A/Udorn/307/1972) with Au nanoparticles was also demonstrated using the optical disk drive tester. In this case, a grooved disk with an indium tin oxide (ITO) film was used. The ITO film functioned both to tune the reflectance of the disk and as an electrically conductive layer for scanning electron microscopy. In both cases, the target substances were successfully recognized in a single scan with a high scanning speed of 4.9 m/s. The results indicate that this optical disk system can be used to detect 100 nm scale substances like influenza viruses, which are smaller than the diffraction limit of the system.

Share and Cite:

T. Shima, M. Fujimaki, A. Yoshida, S. Gopinath, M. Kuwahara, Y. Ohki and K. Awazu, "Detection of Influenza Viruses Attached to an Optical Disk," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 2, 2013, pp. 145-150. doi: 10.4236/jbnb.2013.42020.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. Noda, H. Sagara, A. Yen, A. Takada, H. Kida, R. H. Cheng and Y. Kawaoka, “Architecture of Ribonucleoprotein Complexes in Influenza a Virus Particles,” Nature, Vol. 439, No. 7075, 2006, pp. 490-492. doi:10.1038/nature04378
[2] M. M. Varma, D. D. Nolte, H. D. Inerowicz and F. E. Regnier, “Spinning-Disk Self-Referencing Interferometry of Antigen-Antibody Recognition,” Optics Letters, Vol. 29, No. 9, 2004, pp. 950-952. doi:10.1364/OL.29.000950
[3] A. Hemmi, T. Usui, A. Moto, T. Tobita, N. Soh, K. Nakano, H. Zeng, K. Uchiyama, T. Imato and H. Nakajima, “A Surface Plasmon Resonance Sensor on a Compact Disk-Type Microfluidic Device,” Journal of Separation Science, Vol. 34, No. 20, 2011, pp. 2913-2919. doi:10.1002/jssc.201100446
[4] S. C. B. Gopinath, K. Awazu, P. Fons, J. Tominaga and P. K. R. Kumar, “A Sensitive Multilayered Structure Suitable for Biosensing on the BioDVD Platform,” Analytical Chemistry, Vol. 81, No. 12, 2009, pp. 4963-4970. doi:10.1021/ac802757z
[5] M. Kuwahara, P. Fons, J. Tominaga, K. Honma, A. Egawa, T. Miyatani, K. Nakajima, H. Abe and H. Tokumoto, “Development of a Geometrical Evaluation Apparatus for Ultrahigh 100 GB Optical Disk Masters,” Review of Scientific Instruments, Vol. 76, No. 8, 2005, Article ID: 083706. doi:10.1063/1.1994921
[6] M. Takao, K. Nagata, K. Kimura and T. Kurumizawa, “Optical Recording Material,” Japan Patent No. 1788207, 1993.
[7] D. B. Fraser and H. D. Cook, “Highly Conductive, Transparent Films of Sputtered In2-xSnxO3-y,” Journal of the Electrochemical Society, Vol. 119, No. 10, 1972, pp. 1368-1374. doi:10.1149/1.2403999
[8] H. Miura, N. Toyoshima, Y. Hayashi, S. Sangu, N. Iwata and J. Takahashi, “Patterning of ZnS-SiO2 by Laser Irradiation and Wet Etching,” Japanese Journal of Applied Physics, Vol. 45, No. 2B, 2006, pp. 1410-1413. doi:10.1143/JJAP.45.1410
[9] W. F. Wu and B. S. Chiou, “Effect of Annealing on Electrical and Optical Properties of RF Magnetron Sputtered Indium Tin Oxide Films,” Applied Surface Science, Vol. 68, No. 4, 1993, pp. 497-504. doi:10.1016/0169-4332(93)90233-2
[10] S. N. Kasarova, N. G. Sultanova, C. D. Ivanov and I. D. Nikolov, “Analysis of the Dispersion of Optical Plastic Materials,” Optical Materials, Vol. 29, Vol. 11, 2007, pp. 1481-1490. doi:10.1016/j.optmat.2006.07.010
[11] S. Busse, V. Scheu-mann, B. Menges and S. Mittler, “Sensitivity Studies for Specific Binding Reactions Using the Biotin/Streptavidin System by Evanescent Optical Methods,” Biosensors and Bioelectronics, Vol. 17, No. 8, 2002, pp. 704-710. doi:10.1016/S0956-5663(02)00027-1
[12] T. Kikukawa, T. Kato, H. Shingai and H. Utsunomiya, “High-Density Read-Only Memory Disc with Super Resolution Reflective Layer,” Japanese Journal of Applied Physics, Vol. 40, No. 3B, 2001, pp. 1624-1628. doi:10.1143/JJAP.40.1624
[13] M. Kuwahara, T. Shima, P. Fons and J. Tominaga, “InSitu Raman Scattering Spectroscopy for a Super Resolution Optical Disk During Readout,” Applied Physics Express, Vol. 2, No. 8, 2009, Article ID: 082402. doi:10.1143/APEX.2.082402

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.