Dielectric Property Studies of Biologically Compatible Brushite Single Crystals Used as Bone Graft Substitute


The electrical characterization of bone is essential for the better understanding of the role of electrical stimulation in bone remodeling. Calcium Hydrogen Phosphate Dihydrate or brushite (CaHPO4 2H2O) has been used in bone substitution owing to their fast resorption under physiological condition. Brushite is a suitable matrix for osteoconductive bone grafts. In this work, Calcium Hydrogen Phosphate single crystals have been grown by single diffusion gel growth technique. The powder XRD studies revealed the monoclinic structure of the grown crystals. The vibrational analysis of the crystals is done with FTIR spectroscopy and the major functional groups and their assigned vibrations are discussed. The frequency dependence of dielectric constant and ac conductivity at different temperatures have been studied in detail. This study shows decrease in the dielectric constant with the increase in frequency and temperature. The variation of ac conductivity is found to be increasing with frequency and decreasing with temperature.

Share and Cite:

M. Binitha and P. Pradyumnan, "Dielectric Property Studies of Biologically Compatible Brushite Single Crystals Used as Bone Graft Substitute," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 2, 2013, pp. 119-122. doi: 10.4236/jbnb.2013.42016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. R. Moore, S. E. Graves and G. I. Bain, “Synthetic Bone Graft Substitutes,” ANZ Journal of Surgery, Vol. 71, No. 6, 2001, pp. 354-361.
[2] Z. D. Xia, L. M. Grover, Y. Z. Huang, I. E. Adamopoulos, U. Gbureck, J. T. Triffitt, R. M. Shelton and J. E. Barralet, “In Vitro Biodegradation of Three Brushite Calcium Phosphate Cements by a Macrophage Cell-Line,” Biomaterials, Vol. 27, No. 26, 2006, pp. 5457-4565. doi:10.1016/j.biomaterials.2006.04.030
[3] G. Penel, N. Leroy, P. Van Landuyt, B. Flautre, P. Hardouin, J. lemaitre and G. Leroy, “Raman Microspectrometry Studies of Brushite Cement: In Vivo Evolution in a Sheep Model,” Bone, Vol. 25, No. 2, 1999, pp. 81S-84S. doi:10.1016/S8756-3282(99)00139-8
[4] H. N. Lim, A. Kassim, N. M. Huang, M. A. Armo, P. S. Khiew and W. S. Chiu, “Preparation and Characterization of Brushite Crystals Using High Internal Phase Emulsion,” Colloid Journal, Vol. 71, No. 6, 2009, pp. 793-802. doi:10.1134/S1061933X09060088
[5] S. V. Dorozhkin, “Calcium Orthophosphates as Bioceramics: State of the Art,” Journal of Functional Biomaterials, Vol. 1, No. 1, 2010, pp. 22-107
[6] F. Tamimi, Z. Sheikh and J. Barralet, “Dicalcium Phosphate Cements: Brushite and Monetite,” Acta Biomaterialia, Vol. 8, No. 2, 2012, pp. 474-487. doi:10.1016/j.actbio.2011.08.005
[7] W. F. Neuman, M. W. Neuman, A. G. Diamond, J. Menanteau and W. Gibbons, “Blood: Bone Disequilibrium. VI. Studies of the Solubility Characteristics of Brushite: Apatite Mixtures and Their Stabilization by Noncollagenous Proteins of Bone,” Calcified Tissue International, Vol. 34, No. 1, 1982, pp. 149-157
[8] J. Sierpowska, J. Toyras, M. A. Hakulinen, S. Saarakkala, J. S. Jurvelin and R. Lappalainen, “Electrical and Dielectric Properties of Bovine Trabecular Bone—Relationships with Mechanical Properties and Mineral Density,” Physics in Medicine and Biology, Vol. 48, No. 6, 2003, pp. 775-786. doi:10.1088/0031-9155/48/6/306
[9] K. Suguna and C. Sekar, “Role of Strontium on the Crystallization of Calcium Hydrogen Phosphate Dihydrate (CHPD),” Journal of Minerals and Materials Characterization and Engineering, Vol. 10, No. 7, 2011, pp. 625636. doi:10.1002/crat.200610826
[10] C. Justin Raj, G. Mangalam, S. Mary Navis Priya, J. Mary Linet, C. Vesta, S. Dinakaran, B. Milton Boaz and S. Jerome Das, “Growth and Characterization of Nonlinear Optical Zinc Hydrogen Phosphate Single Crystal Grown in Silica Gel,” Crystal Research and Technology, Vol. 42, No. 4, 2007, pp. 344-348. doi:10.1002/crat.200610826
[11] V. Mahalakshmi, A. Lincy, J. Thomas and K. V. Saban, “Crystal Growth and Characterization of a New Co-Ordination Complex—Barium Tetrakismaleate Dihydrate,” Journal of Physics and Chemistry of Solids, Vol. 73, No. 4, 2012, pp. 584-588. doi:10.1016/j.jpcs.2011.12.012
[12] G. Madhurambal, R. Subha and S. C. Mojumdar, “Crystallizaion and Thermal Characterization of Calcium Hydrogen Phosphate Dihydrate Crystals,” Journal of Thermal Analysis and Calorimetry, Vol. 96, No. 1, 2009, pp. 73-76. doi:10.1007/s10973-008-9841-1
[13] K Rajendran and C. Dale Keefe, “Growth and Characterization of Calcium Hydrogen Phosphate Dihydrate Crystals from Single Diffusion Gel Technique,” Crystal Research and Technology, Vol. 45, No. 9, 2010, pp. 939945. doi:10.1002/crat.200900700
[14] B. Parekh, M. Joshi and A. Vaidya, “Characterisation and Inhibitive Study of Gel Grown Hydroxyapatite Crystals at Physiological Temperature,” Journal of Crystal Growth, Vol. 310, No. 7, 2008, pp. 1749-1753. doi:10.1016/j.jcrysgro.2007.11.219
[15] K. Arora, V. Patel, B. Amin and A. Kothari, “Dielectric Behaviour of Strontium Tartrate Single Crystals,” Bulletin of Material Science, Vol. 27, No. 2, 2004, pp. 141-147. doi:10.1007/BF02708496
[16] G. N. Reddy and S. Saha, “Electrical and Dielectric Properties of Wet Bone as a Function of Frequency,” IEEE Transactions on Biomedical Engineering, Vol. BME-31, No. 3, 1984, pp. 296-303.
[17] A. A. Narino, R. O. Becker and C. H. Bachman, “Dielectric Determination of Bound Water of Bone,” Physics in Medicine and Biology, Vol. 12, No. 3, 1967, pp. 367-378. doi:10.1088/0031-9155/12/3/309

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.