A proposed model for understanding human-bacterial interactions: Space-time approach on community Escherichia coli occurrence and resistance phenomenon


Due to ecological effect, it is expected that population exposures to antimicrobial drugs may lead to microorganisms’ modifications, occasionally leading to resistance emergence. The present review was based on previous empirical data and on related literature search for quantitative empirical models exploring the human-bacterial interactions. Our previous studies have shown the emergence of ciprofloxacin resistant (CIP-R) Escherichia coli significantly related to previous specific levels of ciprofloxacin consumption and to urban clusters of CIP-R E. coli. The evidence of significant spatial clustering of antimicrobial resistance (ciprofloxacin resistance E. coli) reinforces the ecological effect hypothesis as a major drive in resistance emergence. In other words, human populations submitted to a certain ciprofloxacin or quinolone usage level may affect neighbours within certain geographical areas, not necessarily due to individual antimicrobial intake, but as a driving pressure over a modified circulating E. coli population. Apparently quantitative spatial-temporal analytical frameworks may be better for understanding human-bacterial interactions based on any of their epiphenomena (antimicrobial consumption, antimicrobial resistance, geno/phenotypic characteristics).

Share and Cite:

Kiffer, C. , Monteiro, A. , Camargo, E. and Pignatari, A. (2013) A proposed model for understanding human-bacterial interactions: Space-time approach on community Escherichia coli occurrence and resistance phenomenon. Advances in Bioscience and Biotechnology, 4, 505-508. doi: 10.4236/abb.2013.44066.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Harbarth, S. and Samore, M.H. (2005) Antimicrobial resistance determinants and future control. Emerging Infectious Diseases, 11, 794-801. doi:10.3201/eid1106.050167
[2] World Health Organization (2001) Department of Communicable Disease Surveillance and Response. WHO Global Strategy for Containment of Antimicrobial Resistance (WHO/CDS/CSR/DRS/2001.2).
[3] Black, R.E., Morris, S.S. and Bryce, J. (2003) Where and why are 10 million children dying every year? Lancet, 361, 2226-2234. doi:10.1016/S0140-6736(03)13779-8
[4] Woolhouse, M.E.J. (2008) Epidemiology: Emerging diseases go global. Nature, 451, 898-899. doi:10.1038/451898a
[5] Infectious Disease Society of America (2008) Bad bugs, no drugs, as antibiotic discovery stagnates, a public health crisis brews. http://www.medicalnewstoday.com/medicalnews.php?newsid=11084
[6] Lipsitch, M. and Samore, M.H. (2002) Antimicrobial use and antimicrobial resistance: A population perspective. Emerging Infectious Diseases, 8, 347-354. doi:10.3201/eid0804.010312
[7] Anderson, R.M. and May, R.M. (1979) Population boilogy of infectious diseases: Part I. Nature, 280, 361-367. doi:10.1038/280361a0
[8] Kiffer, C.R.V., Camargo, E.C.G., Shimakura, S.E., Ribeiro Jr., P.J., Bailey, T.C., Pignatari, A.C.C. and Monteiro, A.M.V. (2011) A spatial approach for the epidemicology of antibiotic use and resistance in community-based studies: The emergence of urban clusters of Escherichia coli quinolone resistance in Sao Paulo, Brasil. International Journal of Health Geographics, 10, 10-17. doi:10.1186/1476-072X-10-17
[9] Camargo, E.C.G., Kiffer, C.R.V., Pignatari, A.C.C., Shimakura, S.E., Ribeiro Jr., P.J. and Monteiro, A.M.V. (2012) Proposta sobre uso de dados de receitas de antimicrobianos retidas: A experiência EUREQA. Cad Saúde Pública, Rio de Janeiro, 28, 985-990. doi:10.1590/S0102-311X2012000500017
[10] Pe?a, C., Albareda, J.M., Pallares, R., Pujol, M., Tubau, F. and Ariza, J. (1995) Relationship between quinolone use and emergence of ciprofloxacin-resistant Escherichia coli in bloodstream infections. Antimicrobial Agents and Chemotherapy, 39, 520-524. doi:10.1128/AAC.39.2.520
[11] Yasufuku, T., Shigemura, K., Shirakawa, T., Matsumoto, M., Nakano, Y., Tanaka, K., Arakawa, S., Kinoshita, S., Kawabata, M. and Fujisawa, M. (2011) Correlation of overexpression of efflux pump genes with antibiotic resistance in Escherichia coli strains clinically isolated from urinary tract infection patients. Journal of Clinical Microbiology, 49, 189-194. doi:10.1128/JCM.00827-10
[12] Gallini, A., Degris, E., Desplas, M., Bourrel, R., Archambaud, M., Montastruc, J.-L., Lapeyre-Mestre, M. and Sommet, A. (2010) Influence of fluoroquinolone consumption in inpatients and outpatients on ciprofloxacin-resistant Escherichia coli in a university hospital. Journal of Antimicrobal Chemotherapy, 65, 2650-2657. doi:10.1093/jac/dkq351
[13] Wood, S. N. (2006) Generalized additive models—An introduction with R. Chapman and Hall, Boca Raton.
[14] Aldeyab, M.A., et al. (2008) Modelling the impact of antibiotic use and infection control practices on the incidence of hospital-acquired methicillin-resistant staphylococcus aureus: A time-series analysis. Journal of Antimicrobial Chemotherapy, 62, 593-600. doi:10.1093/jac/dkn198
[15] López-Lozano, J.M., et al. (2000) Modelling and forecasting antimicrobial resistance and its dynamic relationship to antimicrobial use: A time series analysis. International Journal of Antimicrobial Agents, 14, 21-31. doi:10.1016/S0924-8579(99)00135-1
[16] Manges, A.R., Johnson, J.R., Foxman, B., O’Bryan, T.T., Fullerton, K.E., et al. (2001) Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. New England Journal of Medicine, 345, 1007-1013. doi:10.1056/NEJMoa011265
[17] Tirabassi, M.V., Wadie, G., Moriarty, K.P., Garb, J., Konefal, S.H., et al. (2005) Geographic information system localization of community-acquired MRSA soft tissue abscesses. Journal of Pediatric Surgery, 40, 962-966. doi:10.1016/j.jpedsurg.2005.03.010
[18] Vieira, A.R., Houe, H., Wegener, H.C., Wong Lo Fo, D.M.A., Bodker, R., et al. (2009) Spatial scan statistics to assess sampling strategy of antimicrobial resistance monitoring program. Foodborne Pathogens and Disease, 6, 15-21. doi:10.1089/fpd.2008.0132
[19] Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., et al. (2008) Global trends in emerging infectious diseases. Nature, 451, 990-994. doi:10.1038/nature06536
[20] Morten, O.A.S., Dantas, G. and Church, G.M. (2009) Functional Characterization of the Antibiotic Resistance Reservoir in the Human Microflora. Science, 325, 1128. doi:10.1126/science.1176950
[21] Martinez, J.L. (2008) Antibiotics and antibiotic resistance genes in natural environments. Science, 321, 365-367. doi:10.1126/science.1159483
[22] Varela, F.J., Maturana, H.R. and Uribe, R. (1974) Autopoiesis: The organization of living systems, its characterization and a model. Biosystems, 5, 187. doi:10.1016/0303-2647(74)90031-8
[23] Fleischaker, G.R. (1988) Autopoiesis: The status of its system logic. Biosystems, 22, 37-49. doi:10.1016/0303-2647(88)90048-2
[24] Perfeito, L., Fernandes, L., Mota, C. and Gordo, I. (2007) Adaptive mutations in bacteria: High Rate and small effects. Science, 317, 813-815. doi:10.1126/science.1142284
[25] Linares, J.F., Gustafsson, I., Baquero, F. and Martinez, J.L. (2006) Antibiotics as intermicrobial signaling agents instead of weapons. PNAS, 103, 19484-19489. doi:10.1073/pnas.0608949103
[26] Pallecchi, L., Riccobono, E., Mantella, A., Fernandez, C., Bartalesi, F., Rodriguez, H., Gotuzzo, E., Bartoloni, A. and Rossolini, G.N. (2011) Small qnrB-harbouring ColElike plasmids widespread in commensal enterobacteria from a remote Amazonas population not exposed to antibiotics. Journal of Antimicrobial Chemotherapy, 66, 1176-1178. doi:10.1093/jac/dkr026

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.