Helicobacter pylori Induction in Gastric Mucosal Prostaglandin and Nitric Oxide Generation Is Dependent on MAPK/ERK-Mediated Activation of IKK-β and cPLA2: Modulatory Effect of Ghrelin


Among the key factors defining the extent of gastric mucosal inflammatory involvement in response to H. pylori is the excessive generation of prostaglandin (PGE2) and nitric oxide (NO), caused by the overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and triggered by the activation of MAPK/JNK, p38 and ERK, and nuclear translocation of the cognate transcription factors. In this study, we report on the role of MAPK/ERK in the regulation of H. pylori LPS-induced gastric mucosal expression of COX-2 and iNOS. We show that ERK activation by the LPS leads to phosphorylation of the inhibitory κB kinase-β (IKK-β) and cytosolic phospholipase A2 (cPLA2), and is reflected in the upsurge in NF-κB nuclear translocation, induction in COX-2 and iNOS expression, and up-regulation in cPLA2 activity. The modulatory effect of peptide hormone, ghrelin, on the LPS-induced changes, although associated with further enhancement in ERK, IKK-β and cPLA2 phosphorylation, was reflected in the suppression of IKK-β and cPLA2 activity through S-nitrosylation. While the effect of ghrelin on S-nitrosylation was susceptible to suppression by the inhibitors of Src/Akt pathway, the inhibition of ERK activation caused the blockage in IKK-β and cPLA2 phosphorylation as well as S-nitrosylation. Taken together, our data show that H. pylori-induced ERK activation plays a critical role in up-regulation of gastric mucosal PGE2 and NO generation at the level of IKK-β and cPLA2 activation, and that ghrelin counters these proinflammatory consequences of the LPS through Src/Akt-dependent S-nitrosylation.

Share and Cite:

B. Slomiany and A. Slomiany, "Helicobacter pylori Induction in Gastric Mucosal Prostaglandin and Nitric Oxide Generation Is Dependent on MAPK/ERK-Mediated Activation of IKK-β and cPLA2: Modulatory Effect of Ghrelin," CellBio, Vol. 2 No. 2, 2012, pp. 21-31. doi: 10.4236/ojcb.2012.22003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. Reider, J. A. Hofmann, R. A. Hatz, M. Stolte and G. A. Enders, “Up-Regulation of Inducible Nitric Oxide Synthase in Helicobacter pylori-Associated Gastritis May Represent an Increased Risk Factor to Develop Gastric Carcinoma of the Intestinal Type,” International Journal of Medical Microbiology, Vol. 293, No. 6, 2003, pp. 403-412. doi:10.1078/1438-4221-00280
[2] S. Backert and M. Neumann, “What a Disorder: Proinflammatory Signaling Pathways Induced by Helicobacter pylori,” Trends in Microbiology, Vol. 18, No. 11, 2010, pp. 479-486. doi:10.1016/j.tim.2010.08.003
[3] B. Bauer and T. F. Meyer, “The human Gastric Pathogen Helicobacter pylori and Its Association with Gastric Cancer and Ulcer Disease,” Ulcers, Vol. 2011, 2011, 23 Pages, Article ID 340157. doi:10.1155/2011/340157
[4] L. A. Wroblewski, R. M. Peek and K. T. Wilson, “Helicobacter pylori and Gastric Cancer: Factors That Modulate Disease Risk,” Clinical Microbiology Reviews, Vol. 23, No. 4, 2010, pp. 713-739. doi:10.1128/CMR.00011-10
[5] B. L. Slomiany and A. Slomiany, “Role of Constitutive Nitric Oxide Synthase in Regulation of Helicobacter pylori-Induced Gastric Mucosal Cyclooxygenase-2 Activation through S-Nitrosylation: Mechanism of Ghrelin Action,” Open Journal of Gastroenterology, Vol. 1, No. 2, 2011, pp. 13-22. doi:10.4236/ojgas.2011.12003
[6] B. L. Slomiany and A. Slomiany, “Role of Ghrelin Induced cSrc activation in Modulation of Gastric Mucosal Inflammatory Responses to Helicobacter pylori,” Inflammopharmacology, Vol. 19, No. 4, 2011, pp. 197-204. doi:10.1007/s10787-011-0083-7
[7] M. Joo, J. G. Wright, N. N. Hu, et al., “Yin Yang 1 Enhances Cyclooxygenase-2 Gene Expression in Macrophages,” American Journal of Physiology Lung and Cell Molecular Physiology, Vol. 292, No. 5, 2007, pp. L1219-L1226. doi:10.1152/ajplung.00474.2006
[8] B. D. Lamon, R. K. Upmacis, R. S. Deeb, H. Koyuncu and D. Haijar, “Inducible Nitric Oxide Synthase Gene Deletion Exaggerates MAPK-Mediated Cyclooxygenase-2 Induction by Inflammatory Stimuli,” American Journal of Physiology Heart and Circulatory Physiology, Vol. 299, No. 3, 2010, pp. H613-H623. doi:10.1152/ajpheart.00144.2010
[9] Y. Ye, J. D. Martinez, R. J. Perez-Polo, Y. Lin, B. F. Uretsky and Y. Birnbaum, “The Role of eNOS, iNOS, and NF-B in Upregulation and Activation of Cyclooxygenase-2 and Infarct Size Reduction by Atorvastin,” American Journal of Physiology Heart and Circulatory Physiology, Vol. 295, No. 1, 2008, pp. H343-H351. doi:10.1152/ajpheart.01350.2007
[10] S. Cuzzocrea and D. Salvemini, “Molecular Mechanisms Involved in the Reciprocal Regulation of Cyclooxygenase and Nitric Oxide Synthase Enzymes,” Kidney International, Vol. 71, No. 4, 2007, pp. 290-297. doi:10.1038/sj.ki.5002058
[11] B. L. Slomiany and A. Slomiany, “Ghrelin Suppression of Helicobacter Pylori-Induced Gastric Mucosal iNOS Is Mediated through the Inhibition of IKK-β Activation by cNOS-Dependent S-Nitrosylation,” Open Journal of Cell Biology Vol. 1, No. 1, 2011, pp. 1-10. doi:10.4236/ojcb
[12] A. V. Grishin, J. Wang, D. A. Potoka, et al., “Lipopolysaccharide Induces Cyclooxygenase-2 in Intestinal Epithelium via a Noncanonical p38 MAPK Pathway,” Journal of Immunology, Vol. 176, No. 1, 2006, pp. 580-588.
[13] Y. J. Kang, B. A. Wingerd, T. Arakawa and W. L. Smith, “Cyclooxygenase-2 Gene Transcription in a Macrophage Model of Inflammation,” Journal of Immunology, Vol. 177, No. 11, 2006, pp. 8111-8122.
[14] I Cho and S. G. Kim, “A novel Mitogen-Activated Protein Kinase Phosphatase-1 and Glucocorticoid Receptor (GR) Interacting Protein-1-Dependent Combinatorial Mechanism of Gene Transrepression by GR,” Molecular Endocrinology, Vol. 23, No. 1, 2009, pp. 86-99. doi:10.1210/me.2008-0257
[15] M. Caivano, B. Gorgoni, P. Cohen and V. Poli, “The Induction of Cyclooxygenase-2 mRNA in Macrophages Is Biphasic and Requires Both CCAAT Enhancer-Binding Protein β (C/EBPβ) and C/EBPδTranscription Factors,” Journal of Biological Chemistry, Vol. 276, No. 52, 2001, pp. 48693-48701. doi:10.1074/jbc.M108282200
[16] D. X. Hou, S. Masuzaki, F. Hashimoto, et al., (2007) “Green Tea Proanthocyanidins Inhibit Cyclooxygenase-2 Expression in LPS-Activated Mouse Macrophages: Molecular Mechanisms and Structure-Activity Relationship,” Archives of Biochemistry and Biophysics, Vol. 460, No. 1, 2007, pp. 67-74. doi:10.1016/j.abb.2007.01.009
[17] B. L. Slomiany and A. Slomiany, “Involvement of p38 MAPK-Dependent Activator Protein (AP-1) Activation in Modulation of Gastric Mucosal Inflammatory Responses to Helicobacter pylori by Ghrelin,” Inflammopharmacology, 2012. doi:10.1007/s10787-012-0141-9
[18] S. Akira and K. Takeda, “Toll-Like Receptor Signaling,” Nature Reviews Immunology, Vol. 4, No. 7, 2004, pp. 499-511. doi:10.1038/nri1391
[19] A. M. F. Liu and Y. H. Wong, “G16-Mediated Activation of Nuclear Factor B by the Adenosine A1 Receptor Involves c-Src, Protein Kinase C, and ERK Signaling,” Journal of Biological Chemistry, Vol. 279, No. 51, 2004, pp. 53196-53204. doi:10.1074/jbc.M410196200
[20] R. Medzhitov and T. Horng, “Transcriptional Control of the Inflammatory Response,” Nature Reviews Immunology, Vol. 9, No. 10, 2009, pp. 692-703. doi:10.1038/nri2634
[21] B. L. Slomiany and A. Slomiany, “Cytosolic Phospholipase A2 Activation in Helicobacter pylori Lipopolysaccharide-Induced Interference with Gastric Mucin Synthesis,” IUBMB Life, Vol. 58, No. 4, 2006, pp. 217-223. doi:10.1080/15216540600732021
[22] S. P. Newman, J. D. Croxtall, Q. Choudhury and R. J. Flower, “The Coordinate Regulation of Lipocortin 1, COX-2 and cPLA2 by IL-1β in A549 Cells,” Advances in Experimental Medicine and Biology, Vol. 407, 1997, pp. 249-253.
[23] M. Hughes-Fulford, R. R. Yjandrawinata, C. F. Li and S. Sayyah, “Arachidonic Acid, an Omega-6 Fatty Acid, Induces Cytoplasmic Phospholipase A2 in Prostate Carcinoma Cells,” Carcinogenesis Vol. 26, No. 9, 2005, pp. 1520-1526. doi:10.1093/carcin/bgi112
[24] C. C. Lin, W. N. Lin, W. J. Wang, et al., “Functional Coupling of COX-2 and cPLA2 Induced by ATP in Rat Vascular Smooth Muscle Cells: Role of ERK1/2, p38 MAPK, and NF-κB,” Cardiovascular Research, Vol. 82, No. 3, 2009, pp. 522-531. doi:10.1093/cvr/cvp069
[25] N. L. Reynaert, K. Ckless, S. H. Korn, et al., “Nitric Oxide Represses Inhibitory κB Kinase through S-Nitrosy-lation,” Proceedings of the National Academy of Sciences of theUSA, Vol. 101, No. 24, 2004, pp. 8945-8950.
[26] S. F. Kim, D. A. Huri and S. H. Snyder, “Inducible Nitric Oxide Synthase Binds, Snitrosylates, and Activates Cyclooxygenase-2,” Science, Vol. 310, No. 5756, 2005, pp. 1966-1970. doi:10.1126/science.1119407
[27] L. Xu, C. Han and T. Wu, “Activation of Cytosolic Phospholipase A2? through Nitric Oxide-Induced S-Nitrosylation. Involvement of Inducible Nitric-Oxide Synthase and Cyclooxygenase-2,” Journal of Biological Chemistry, Vol. 283, No. 6, 2008, pp. 3077 -3087. doi:10.1074/jbc.M705709200
[28] N. D. Perkins, “Integrating Cell-Signalling Pathways with NF-κB and IKK Function,” Nature Reviews Molecular Cell Biology, Vol. 8, No. 1, 2007, pp. 49-62 doi:10.1038/nrm2083
[29] B. L. Slomiany and A. Slomiany, “Involvement of Constitutive Nitric Oxide Synthase in Ghrelin-Induced Cytosolic Phospholipase A2 Activation in Gastric Mucosal Cell Protection against Ethanol Cytotoxicity,” Inflammopharmacology, Vol. 17, No. 5, 2009, pp. 245-253. doi:10.1007/s10787-009-0013-0
[30] B. L. Slomiany and A. Slomiany, “Modulation of gastric Mucosal Inflammatory Responses to Helicobacter pylori by Ghrelin: Role of cNOS-Dependent IKK-β S-Nitrosylation in the Regulation of COX-2 Activation,” American Journal of Molecular Biology, Vol. 2, No. 2, 2012, pp. 113-123. doi:10.4236/ajmb
[31] B. L. Slomiany and A. Slomiany, “Helicobacter pylori Induces Disturbances in Gastric Mucosal Akt Activation through Inducible Nitric Oxide Synthase-Dependent S-Nitrosylation: Effect of Ghrelin,” ISRN Gastroenterology, 2011, Article ID: 308727. doi:10.5402/2011/308727
[32] S. M. Noha, A. G. Atanasov, D. Schuster, et al., “Discovery of a Novel IKK-β Inhibitor by Ligand-Based Virtual Screening Techniques,” Bioorganic & Medicinal Chemistry Letters, Vol. 21, No. 1, 20011, pp. 577-583.
[33] S. R. Jaffrey, H. Erdjument-Bromage, D. Ferris, P. Tempst and S. H. Snyder, “Protein S-Nitrosylation: A Physiological Signal for Neuronal Nitric Acid,” Nature Cell Biology, Vol. 3, No. 2, 2001, pp. 193-197. doi:10.1038/35055104
[34] M. T. Forrester, M. W. Foster and J. S. Stamler, “Assessment and Application of the Biotin Switch Technique for Examining Protein S-Nitrosylation under Conditions of Pharmacologically Induced Oxidative Stress,” Journal of Biological Chemistry, Vol. 282, No. 19, 2007, pp. 13977-13983. doi:10.1074/jbc.M609684200
[35] K. W. Kang, S. Y. Choi, M. K. Cho, C. C. Lee and S. G. Kim, “Thrombin Induces Nitric-Oxide Synthase via Ga12/13-Coupled Protein Kinase C-Dependent I-κBα and JNK-Mediated I-κBα Degradation,” Journal of Biological Chemistry, Vol. 278, No. 19, 2003, pp. 17368-17378. doi:10.1074/jbc.M300471200
[36] T. Hirabayashi and T. Shimizu, “Localization and Regulation of Cytosolic Phospholipase A2,” Biochimica et Biophysica Acta, Vol. 1488, No. 1-2, 2000, pp. 124-138. doi:10.1016/S1388-1981(00)00115-3
[37] P. Lodeiro, M. Theodoropoulou, M. Pardo, F. F. Casanueva and J. P. Camina, “c-Src Regulates Akt Signaling in Response to Ghrelin via b-Arrestin Signaling-Independent and Dependent Mechanism,” PLoS ONE, Vol. 4, No. 3, 2009, p. e4686. doi:10.1371
[38] W. Wu, Z. Sun, J. Wu, et al., “Trihydrophobin 1 Phosphorylatio by c-Src Regulates MAPK/ERK Signaling and Cell Migration,” PLoS One, Vol. 7, No. 1, 2012, p. e29920. doi:10.1371/journal.pone.0029920
[39] X. Xu, B. S. Jhun, C. H. Ha and Z. G. Jin, (2008) “Molecular Mechanisms of Ghrelin-Mediated Endothelial Nitric-Oxide Synthase Activation,” Endocrinology, Vol. 149, No. 8, 2008, pp. 4183-4192. doi:10.1210/en.2008-0255

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.