Novel EPS/TiO2 Nanocomposite Prepared from Recycled Polystyrene


The synthesis and characterization of a new nanocomposite material that was prepared from recycled expanded polystyrene (EPS) and titanium dioxide (TiO2) is reported here. The EPS was obtained from chemical reagent box insulation. To obtain the nanocomposite, these materials were dispersed in a solvent, mixed with TiCl4 and heated. The resulting new material was characterized with SEM, TEM, TGA, BET, Raman and IR techniques. The Raman and IR spectra provided complementary information regarding the structure of the nanocomposite. The Raman spectra were used to identify the crystalline structure of TiO2 in the nanocomposite. In contrast, the IR spectra were used to identify the organic portion of the nanocomposite. The TEM images indicated that the nanocomposites had an average particle size of 6 - 12 nm. In addition, the adsorption and photocatalytic properties of the new material were evaluated. The EPS/TiO2 nanocomposite was efficient at degrading methylene blue (MB) dye solutions under UV irradiation. Furthermore, according to thermal analysis, this material had greater polymer stability due to the incorporation of TiO2.

Share and Cite:

G. Herrera-Sandoval, D. Baez-Angarita, S. Correa-Torres, O. Primera-Pedrozo and S. Hernández-Rivera, "Novel EPS/TiO2 Nanocomposite Prepared from Recycled Polystyrene," Materials Sciences and Applications, Vol. 4 No. 3, 2013, pp. 179-185. doi: 10.4236/msa.2013.43021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. J. Nohynek, E. Antignac, T. Re and H. Toutain, “Safety Assessment of Personal Care Products/Cosmetics and Their Ingredients,” Toxicology and Applied Pharmacology, Vol. 243, No. 2, 2010, pp. 239-259. doi:10.1016/j.taap.2009.12.001
[2] A. Fujishima, X. Zhang and D. A. Tryk, “TiO2 Photocatalysis and Related Surface Phenomena,” Surface Science Reports, Vol. 63, No. 12, 2008, pp. 515-582. doi:10.1016/j.surfrep.2008.10.001
[3] E. Alonso, I. Montequi and M. J. Cocero, “Effect of Synthesis Conditions on Photocatalytic Activity of TiO2 Powders Synthesized in Supercritical CO2,” The Journal of Supercritical Fluids, Vol. 49, No. 2, 2009, pp. 233-238. doi:10.1016/j.supflu.2009.01.005
[4] T. Kawahara, T. Ozawa, M. Iwasaki, H. Tada and S. Ito, “Photocatalytic Activity of Rutile-Anatase Coupled TiO2 Particles Prepared by a Dissolution-Reprecipitation Method,” Journal of Colloid and Interface Science, Vol. 267, No. 2, 2003, pp. 377-381. doi:10.1016/S0021-9797(03)00755-0
[5] T. Ohno, K. Tokieda, S. Higashida and M. Matsumura, “Synergism between Rutile and Anatase TiO2 Particles in Photocatalytic Oxidation of Naphthalene,” Applied Catalysis A: General, Vol. 244, No. 2, 2003, pp. 383-391. doi:10.1016/S0926-860X(02)00610-5
[6] K. Porkodi and S. D. Arokiamary, “Synthesis and Spectroscopic Characterization of Nanostructured Anatase Titania: A Photocatalyst,” Materials Characterization, Vol. 58, No. 6, 2007, pp. 495-503. doi:10.1016/j.matchar.2006.04.019
[7] J. Wang, G. Zhao, Z. Zhang, X. Zhang, G. Zhang, T. Ma, Y. Jiang, P. Zhang and Y. Li, “Investigation on Degradation of Azo Fuchsine Using Visible Light in the Presence of Heat-Treated Anatase TiO2 Powder,” Dyes and Pigments, Vol. 75, No. 2, 2007, pp. 335-343. doi:10.1016/j.dyepig.2006.06.007
[8] L. Zan, L. Tian, Z. Liu and Z. Peng, “A New Polystyrene-TiO2 Nanocomposite Film and Its Photocatalytic Degradation,” Applied Catalysis A: General, Vol. 264, No. 2, 2004, pp. 237-242. doi:10.1016/j.apcata.2003.12.046
[9] J. I. Lim, B. Yu, K. M. Woo and Y.-K. Lee, “Immobilization of TiO2 Nanofibers on Titanium Plates for Implant Applications,” Applied Surface Science, Vol. 255, No. 5, 2008, pp. 2456-2460.
[10] V. R. Choudhary, V. P. Patil, P. Jana and B. S. Uphade, “Nano-Gold Supported on Fe2O3: A Highly Active Catalyst for Low Temperature Oxidative Destruction of Methane Green House Gas from Exhaust/Waste Gases,” Applied Catalysis A: General, Vol. 350, No. 2, 2008, pp. 186-190. doi:10.1016/j.apcata.2008.08.008
[11] S. Cho and W. Choi, “Solid-Phase Photocatalytic Degradation of PVC-TiO2 Polymer Composites,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 143, No. 2-3, 2001, pp. 221-228. doi:10.1016/S1010-6030(01)00499-3
[12] L.-H. Lin, H.-J. Liu, J.-J. Hwang, K.-M. Chen and J.-C. Chao, “Photocatalytic Effects and Surface Morphologies of Modified Silicone-TiO2 Polymer Composites,” Materials Chemistry and Physics, Vol. 127, No. 1-2, 2011, pp. 248-252. doi:10.1016/j.matchemphys.2011.01.069
[13] C. Yang, C. Gong, T. Peng, K. Deng and L. Zan, “High Photocatalytic Degradation Activity of the Polyvinyl Chloride (PVC)-Vitamin C (VC)-TiO2 Nano-Composite Film,” Journal of Hazardous Materials, Vol. 178, No. 1-3, 2010, pp. 152-156. doi:10.1016/j.jhazmat.2010.01.056
[14] B. Lowes, A. Bohrer, T. Tran and D. Shipp, “Grafting of Polystyrene ‘from’ and ‘through’ Surface Modified Titania Nanoparticles,” Polymer Bulletin, Vol. 62, No. 3, 2009, pp. 281-289. doi:10.1007/s00289-008-0016-9
[15] F. Magalhaes and R. M. Lago, “Floating Photocatalysts Based on TiO2 Grafted on Expanded Polystyrene Beads for the Solar Degradation of Dyes,” Solar Energy, Vol. 83, No. 9, 2009, pp. 1521-1526. doi:10.1016/j.solener.2009.04.005
[16] J. Shang, M. Chai and Y. Zhu, “Solid-Phase Photocatalytic Degradation of Polystyrene Plastic with TiO2 as Photocatalyst,” Journal of Solid State Chemistry, Vol. 174, No. 1, 2003, pp. 104-110. doi:10.1016/S0022-4596(03)00183-X
[17] W. Fa, L. Zan, C. Gong, J. Zhong and K. Deng, “Solid-Phase Photocatalytic Degradation of Polystyrene with TiO2 Modified by Iron (II) Phthalocyanine,” Applied Catalysis B: Environmental, Vol. 79, No. 3, 2008, pp. 216-223. doi:10.1016/j.apcatb.2007.10.018
[18] A. P. Kumar, D. Depan, N. Singh Tomer and R. P. Singh, “Nanoscale Particles for Polymer Degradation and Stabilization—Trends and Future Perspectives,” Progress in Polymer Science, Vol. 34, No. 6, 2009, pp. 479-515. doi:10.1016/j.progpolymsci.2009.01.002
[19] G. Liu, D. Zhu, W. Zhou, S. Liao, J. Cui, K. Wu and D. Hamilton, “Solid-Phase Photocatalytic Degradation of Polystyrene Plastic with Goethite Modified by Boron under UV-Vis Light Irradiation,” Applied Surface Science, Vol. 256, No. 8, 2010, pp. 2546-2551. doi:10.1016/j.apsusc.2009.10.102
[20] G. L. Liu, D. W. Zhu, S. J. Liao, L. Y. Ren, J. Z. Cui and W. B. Zhou, “Solid-Phase Photocatalytic Degradation of Polyethylene-Goethite Composite Film under UV-Light Irradiation,” Journal of Hazardous Materials, Vol. 172, No. 2-3, 2009, pp. 1424-1429. doi:10.1016/j.jhazmat.2009.08.008
[21] L. Zan, S. Wang, W. Fa, Y. Hu, L. Tian and K. Deng, “Solid-Phase Photocatalytic Degradation of Polystyrene with Modified Nano-TiO2 Catalyst,” Polymer, Vol. 47, No. 24, 2006, pp. 8155-8162. doi:10.1016/j.polymer.2006.09.023
[22] X. Zhao, Z. Li, Y. Chen, L. Shi and Y. Zhu, “Enhancement of Photocatalytic Degradation of Polyethylene Plastic with CuPc Modified TiO2 Photocatalyst under Solar Light Irradiation,” Applied Surface Science, Vol. 254, No. 6, 2008, pp. 1825-1829. doi:10.1016/j.apsusc.2007.07.154
[23] K. Gandhi, B. K. Dixit, and D. K. Dixit, “Effect of Addition of Zirconium Tungstate, Lead Tungstate and Titanium Dioxide on the Proton Conductivity of Polystyrene Porous Membrane,” International Journal of Hydrogen Energy, Vol. 37, No. 4, 2012, pp. 3922-3930. doi:10.1016/j.ijhydene.2011.04.209
[24] B. Jaleh, M. S. Madad, S. Habibi, P. Wanichapichart and M. F. Tabrizi, “Evaluation of Physico-Chemical Properties of Plasma Treated PS-TiO2 Nanocomposite Film,” Surface and Coatings Technology, Vol. 206, No. 5, 2011, pp. 947-950. doi:10.1016/j.surfcoat.2011.03.136
[25] H. L. Luo, J. Sheng and Y. Z. Wan, “Preparation and Characterization of TiO2/Polystyrene Core-Shell Nanospheres via Microwave-Assisted Emulsion Polymerization,” Materials Letters, Vol. 62, No. 1, 2008, pp. 37-40. doi:10.1016/j.matlet.2007.04.108
[26] M. Song, C. Pan, J. Li, R. Zhang, X. Wang and Z. Gu, “Blends of TiO2 Nanoparticles and Poly (N-Isopropy-lacrylamide)-Co-Polystyrene Nanofibers as a Means to Promote the Biorecognition of an Anticancer Drug,” Talanta, Vol. 75, No. 4, 2008, pp. 1035-1040. doi:10.1016/j.talanta.2008.01.005
[27] P. J. Wibawa, H. Saim, M. A. Agam and H. Nur, “Design, Preparation and Characterization of Polystyrene Nanopheres Based-Porous Structure towards UV-Vis and Infrared Light Absorption,” Physics Procedia, Vol. 22, 2011, pp. 524-531. doi:10.1016/j.phpro.2011.11.081
[28] M. Antonietti and K. Landfester, “Polyreactions in Miniemulsions,” Progress in Polymer Science, Vol. 27, No. 4, 2002, pp. 689-757. doi:10.1016/S0079-6700(01)00051-X
[29] S. Palaniappan and A. John, “Polyaniline Materials by Emulsion Polymerization Pathway,” Progress in Polymer Science, Vol. 33, No. 7, 2008, pp. 732-758. doi:10.1016/j.progpolymsci.2008.02.002
[30] B. Peng, F. Tang, D. Chen, X. Ren, X. Meng and J. Ren, “Preparation of PS/TiO2/UF Multilayer Core-Shell Hybrid Microspheres with High Stability,” Journal of Colloid and Interface Science, Vol. 329, No. 1, 2009, pp. 62-66. doi:10.1016/j.jcis.2008.09.069
[31] B. A. Rozenberg and R. Tenne, “Polymer-Assisted Fabrication of Nanoparticles and Nanocomposites,” Progress in Polymer Science, Vol. 33, No. 1, 2008, pp. 40-112. doi:10.1016/j.progpolymsci.2007.07.004
[32] E. Tang, H. Liu, L. Sun, E. Zheng and G. Cheng, “Fabrication of Zinc Oxide/Poly(Styrene) Grafted Nanocomposite Latex and Its Dispersion,” European Polymer Journal, Vol. 43, No. 10, 2007, pp. 4210-4218. doi:10.1016/j.eurpolymj.2007.05.015
[33] Y. Wang, Y. Ke, J. Li, S. Du and Y. Xia, “Dispersion Behavior of Core-Shell Silica-Polymer Nanoparticles,” China Particuology, Vol. 5, No. 4, 2007, pp. 300-304. doi:10.1016/j.cpart.2007.04.004
[34] Y. Wu, Y. Zhang, J. Xu, M. Chen and L. Wu, “One-Step Preparation of PS/TiO2 Nanocomposite Particles via Miniemulsion Polymerization,” Journal of Colloid and Interface Science, Vol. 343, No. 1, 2010, pp. 18-24. doi:10.1016/j.jcis.2009.11.022
[35] J. Zhang, G. Gao, M. Zhang, D. Zhang, C. Wang, D. Zhao and F. Liu, “ZnO/PS Core-Shell Hybrid Microspheres Prepared with Miniemulsion Polymerization,” Journal of Colloid and Interface Science, Vol. 301, No. 1, 2006, pp. 78-84. doi:10.1016/j.jcis.2006.05.005
[36] “05/02386 Production of Biodegradable Plastics from Activated Sludge Generated From a Food Processing Industrial Wastewater Treatment Plant,” Fuel and Energy Abstracts, Vol. 46, No. 5, 2005, pp. 346-346. doi:10.1016/S0140-6701(05)82395-1
[37] R. Montgomery, “Development of Biobased Products,” Bioresource Technology, Vol. 91, No. 1, 2004, pp. 1-29. doi:10.1016/S0960-8524(03)00154-8
[38] B. Singh and N. Sharma, “Mechanistic Implications of Plastic Degradation,” Polymer Degradation and Stability, Vol. 93, No. 3, 2008, pp. 561-584. doi:10.1016/j.polymdegradstab.2007.11.008
[39] M. Suresh Kumar, S. N. Mudliar, K. M. K. Reddy and T. Chakrabarti, “Production of Biodegradable Plastics from Activated Sludge Generated from a Food Processing Industrial Wastewater Treatment Plant,” Bioresource Technology, Vol. 95, No. 3, 2004, pp. 327-330. doi:10.1016/j.biortech.2004.02.019
[40] S. Yan, S. Bala Subramanian, R. D. Tyagi and R. Y. Surampalli, “Bioplastics from Activated Sludge Treating Pulp and Paper Wastewater,” Journal of Biotechnology, Vol. 136, Supplement 1, 2008, pp. S31-S32.
[41] E. Dzunuzovic, V. Vodnik, K. Jeremic and J. M. Nedeljkovic, “Thermal Properties of PS/TiO2 Nanocomposites Obtained by in Situ Bulk Radical Polymerization of Styrene,” Materials Letters, Vol. 63, No. 11, 2009, pp. 908-910. doi:10.1016/j.matlet.2009.01.039
[42] B. Su, Z. Ma, S. Min, S. She and Z. Wang, “Preparation of TiO2/PS Complex Nanoparticles,” Materials Science and Engineering: A, Vol. 458, No. 1-2, 2007, pp. 44-47. doi:10.1016/j.msea.2006.12.111

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.