[1]

I. Garg, H. Sharma, N. Kapila, K. Dharamvir and V. K. Jindal, “Transition Metal Induced Magnetism in Smaller Fullerenes (C_{n} for n ≤ 36),” Nanoscale, Vol. 3, No. 1, 2011, pp. 217224. doi:10.1039/c0nr00475h

[2]

P. Tereshchuk and J. L. F. Da Silva, “Encapsulation of Small Magnetic Clusters in Fullerene Cages: A Density Functional Theory Investigation within van der Waals Corrections,” Physical Review B, Vol. 85, No. 19, 2012, Article ID: 195461. doi:10.1103/PhysRevB.85.195461

[3]

B. I. Swanson, S. I. Hamburg and R. R. Ryan, “Bonding in Divalent Transition Metal Cyanides. Crystal Structure of Dicesium Magnesium Hexacyanoferrate (II),” Inorganic Chemistry, Vol. 13, No. 7, 1974, pp 16851687.
doi:10.1021/ic50137a028

[4]

E. A. Robinson, “Interpretation of BondLength Data for TransitionMetalAcetylene Complexes, in Particular the Complex [C5H5NH][TaCI,(PhC=CPh)(NC5H5)],” Journal of the Chemical Society, Dalton Transactions, No. 12, 1981, pp. 23732375. doi:10.1039/dt9810002373

[5]

P. Susmita, Ch. Sayan, Ph. ManhHuong, M. Pritish and S. Hariharan, “Carbon Nano Straws: Nanotubes Filled with Superparamagnetic Nanoparticles,” Nanotechnology, Vol. 20, No. 48, 2009, Article ID: 485604.
doi:10.1088/09574484/20/48/485604

[6]

C. Soldano, F. Rossella, V. Bellani, S. Giudicatti and S. Kar, “Cobalt NanoclusterFilled Carbon Nanotube Arrays: Engineered Photonic Bandgap and Optical Reflectivity,” ACS Nano, Vol. 4, No. 11, 2010, pp. 65736578.
doi:10.1021/nn101801y

[7]

P. F. Weck, E. Kim, K. R. Czerwinski and D. Tomanek, “Structural and Magnetic Properties of Tc_{n}@C_{60} Endohedral Metalofullerenes: FirstPrinciples Predictions,” Physical Review B, Vol. 81, No. 12, 2010, Article ID: 125448.

[8]

M. B. Javan, N. Tajabor, M. RezaeeRoknabadi and M. Behdani, “First Principles Study of Small Cobalt Clusters Encapsulated in C60 and C82 Spherical Nanocages,” Applied Surface Science, Vol. 257, No. 17, 2011, pp. 75867591.
doi:10.1016/j.apsusc.2011.03.132

[9]

M. B. Javan and N. Tajabor, “Structural, Electronic and Magnetic Properties of Fe_{n}@C_{60} and Fe_{n}@C_{80} (n = 2  7) Endohedral Metallofullerene NanoCages: First Principles Study,” Journal of Magnetism and Magnetic Materials, Vol. 324, No. 1, 2012, pp. 5259.
doi:10.1016/j.jmmm.2011.07.034

[10]

P. L. Tereshchuk, “Energetic and Magnetic Properties of Chitosan with Embedded Co Clusters,” Computational Materials Science, Vol. 50, No. 3, 2011, pp. 991997.
doi:10.1016/j.commatsci.2010.10.038

[11]

A. Kuznetsov, “From Carbides to Co_{5} and Co_{13} Metallofullerenes: FirstPrinciples Study and Design,” American Journal of Biomedical Engineering, Vol. 2, No. 1, 2012, pp. 3238. doi:10.5923/j.ajbe.20120201.05

[12]

A. Kuznetsov, “Magnetic Properties of Endohedral Complexes Co_{5}@Cn Depending upon the Size and Symmetry of Fullerenes as well as Orientation of Cobalt Cluster,” Computational Materials Science, Vol. 54, 2012, pp. 204 207. doi:10.1016/j.commatsci.2011.09.034

[13]

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, “Visualization, and Analysis Platform,” Journal of Cheminformatics, Vol. 4, 2012, pp. 117.
http://www.jcheminf.com/content/4/1/17

[14]

P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review B, Vol. 136, No. 3B, 1964, pp. B864B871. doi:10.1103/PhysRev.136.B864

[15]

T. Ozaki, “Variationally Optimized Atomic Orbitals for LargeScale Electronic Structures,” Physical Review B, Vol. 67, No. 15, 2003, Article ID: 155108.
doi:10.1103/PhysRevB.67.155108

[16]

T. Ozaki and H. Kino, “Numerical Atomic Basis Orbitals from H to Kr,” Physical Review B, Vol. 69, No. 19, 2004, Article ID: 195113. doi:10.1103/PhysRevB.69.195113

[17]

T. Ozaki and H. Kino, “Efficient Projector Expansion for the ab Initio LCAO Method,” Physical Review B, Vol. 72, No. 4, 2005, Article ID: 045121.
doi:10.1103/PhysRevB.72.045121

[18]

OpenMX, http://www.openmxsquare.org/

[19]

P. Perdew, K. Burke and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, No. 18, 1996. pp. 38653868.
doi:10.1103/PhysRevLett.77.3865

[20]

P. Császár and P. Pulay, “Geometry Optimization by Direct Inversion in the Iterative Subspace,” Journal of Molecular Structure, Vol. 114, 1984, pp. 3134.
doi:10.1016/S00222860(84)871987

[21]

http://www.jaist.ac.jp/~tozaki/vps_pao2006/vps_pao.html

[22]

G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics for OpenShell Transition Metals,” Physical Review B, Vol. 48, No. 17, 1993, pp. 1311513118.
doi:10.1103/PhysRevB.48.13115

[23]

G. Kresse and J. Furthmüller, “Efficient Iterative Schemes for ab Initio TotalEnergy Calculations Using a PlaneWave Basis Set,” Physical Review B, Vol. 54, No. 16, 1996, pp. 1116911186. doi:10.1103/PhysRevB.54.11169

[24]

E. Blochl, “Projector AugmentedWave Method,” Physical Review B, Vol. 50, No. 24, 1994, pp. 1795317979.
doi:10.1103/PhysRevB.50.17953

[25]

G. Kresse and D. Joubert, “From Ultrasoft Pseudopotentials to the Projector AugmentedWave Method,” Physical Review B, Vol. 59, No. 3, 1999, pp. 17581775.
doi:10.1103/PhysRevB.59.1758
