A Density Functional Theory Study of Methoxy and Atomic Hydrogen Chemisorption on Au(100) Surface

DOI: 10.4236/jmp.2013.43A057   PDF   HTML   XML   4,695 Downloads   7,312 Views   Citations


The adsorption of CH3O and H on the (100) facet of gold was studied using self-consistent periodic density functional theory (DFT-GGA) calculations. The best binding site, energy, and structural parameter, as well as the local density of states, of each species were determined. CH3O is predicted to strongly adsorb on the bridge and hollow sites, with the bridge site as preferred one, with one of the hydrogen atoms pointing toward a fourfold vacancy (bridge-H hollow). The top site was found to be unstable, the CH3O radical moving to the bridge –H top site during geometry optimization. Adsorption of H is unstable on the hollow site, the atom moving to the bridge site during geometry optimization. The 4-layer slab is predicted to be endothermic with respect to gaseous H2 and a clean Au surface.

Share and Cite:

M. N’dollo, P. Moussounda, T. Dintzer and F. Garin, "A Density Functional Theory Study of Methoxy and Atomic Hydrogen Chemisorption on Au(100) Surface," Journal of Modern Physics, Vol. 4 No. 3A, 2013, pp. 409-417. doi: 10.4236/jmp.2013.43A057.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Barnes, P. Pudney, Q. Guo and M. Bowker, “Molecular-Beam Studies of Methanol Partial Oxidation on Cu(110),” Journal of the Chemical Society, Faraday Transactions, Vol. 86, No. 15, 1990, pp. 2693-2699. doi:10.1039/ft9908602693
[2] S. M. Francis, F. M. Leibsle, S. Haq, N. Xiang and M. Bowker, “Methanol Oxidation on Cu(110),” Surface Science, Vol. 315, No. 3, 1994, pp. 284-292. doi:10.1016/0039-6028(94)90132-5
[3] M. Bader, A. Puschmann and J. Haase, “Orientation of CH3O on Cu(110) as Examined by Near-Edge X-Ray Absorption Fine Structure Spectroscopy,” Physical Review B, Vol. 33, No. 10, 1986, pp. 7336-7338. doi:10.1103/PhysRevB.33.7336
[4] E. Holub-Krappe, K. C. Prince, K. Horn and D. P. Woodruff, “X-Ray Photoelectron Diffraction Determination of the Molecular Orientation of CO and Methoxy Adsorbed on Cu(110),” Surface Science, Vol. 173, No. 1, 1986, pp. 176-193. doi:10.1016/0039-6028(86)90115-9
[5] A. V. de Carvalho, M. C. Asensio and D. P. Woodruff, “Determination of the Orientation of Methoxy on Cu(111) Using X-Ray Photoelectron Diffraction,” Surface Science, Vol. 273, No. 3, 1992, pp. 381-384. doi:10.1016/0039-6028(92)90075-H
[6] K. Amemiya, Y. Kitajima, Y. Yonamoto, S. Terada, H. Tsukabayashi, T. Yokoyama and T. Ohta, “Oxygen K-Edge X-Ray-Absorption Fine-Structure Study of Surface Methoxy Species on Cu(111) and Ni(111),” Physical Review B, Vol. 59, No. 3, 1999, pp. 2307-2312. doi:10.1103/PhysRevB.59.2307
[7] P. Hofmann, K. M. Schindler, S. Bao, V. Fritzsche, D. E. Ricken, A. M. Bradshaw and D. P. Woodruff, “The Geometric Structure of the Surface Methoxy Species on Cu(111),” Surface Science, Vol. 304, No. 1-2, 1994, pp. 74-84. doi:10.1016/0039-6028(94)90754-4
[8] R. Ryberg, “The Oxidation of Methanol on Cu(100),” Journal of Chemical Physics, Vol. 82, No. 1, 1985, pp. 567-573. doi:10.1063/1.448729
[9] D. A. Outka, R. J. Madix and J. Stoehr, “Structural Studies of Formate and Methoxy Groups on the Cu(100) Surface NEXAFS and SEXAFS,” Surface Science, Vol. 164, No. 1, 1985, pp. 235-259. doi:10.1016/0039-6028(85)90710-1
[10] R. Ryberg, “Symetry and Orientation of CH3O on Cu(100),” Physical Review B, Vol. 31, No. 4, 1985, pp. 2545-2547. doi:10.1103/PhysRevB.31.2545
[11] R. Ryberg, “CH Stretch Vibrations of Adsorbed Molecules Studied by Infrared Spectroscopy: CH3O on Cu(100),” Chemical and Physics Letters, Vol. 83, No. 3, 1981, pp. 423-426. doi:10.1016/0009-2614(81)85493-0
[12] J. P. Camplin and E. M. McCash, “ARAIRS Study of Methoxy and Ethoxy on Oxidized Cu(100),” Surface Science, Vol. 360, No. 1-3, 1996, pp. 229-241. doi:10.1016/0039-6028(96)00641-3
[13] T. Lindner, J. Somers, A. M. Bradshaw, A. L. D. Kilcoyne and D. P. Woodruff, “A Photoelectron Diffraction and NEXAFS Study of the Structure of the Methoxy Species (CH3O-) on Cu(100),” Surface Science, Vol. 203, No. 3, 1988, pp. 333-352. doi:10.1016/0039-6028(88)90087-8
[14] W. S. Sim, P. Gardner and D. A. King, “Structure and Reactivity of the Surface Methoxy Species on Ag(111),” Journal of Physical Chemistry, Vol. 99, No. 43, 1995, pp. 16002-16010. doi:10.1021/j100043a046
[15] L. J. Richer and W. Ho, “Reactive Adsorption of H2CO on Ni(110) at 95K,” Journal of Chemical Physics, Vol. 83, No. 5, 1985, pp. 2165-2169. doi:10.1063/1.449308
[16] H. E. Dastoor, P. Gardner and D. A. King, “Identification of Two Telted Adsorbed μ2-Methoxy Species on Ni(110 Using RAIRS,” Chemical Physics Letters, Vol. 209, No. 5-6, 1993, pp. 493-498.
[17] A. Emundts, G. Pirug, J. Werner and H. P. Bonzel, “Large Solid Angle X-Ray Photoelectron Intensity Distributions from CO, Methoxy and Formate Adsorbed on Ni(110),” Surface Science, Vol. 410, No. 2-3, 1998, pp. L727-L735. doi:10.1016/S0039-6028(98)00233-7
[18] B. Sexton, “Methanol Decomposition on Platinum(111),” Surface Science, Vol. 102, No. 1, 1981, pp. 271-281. doi:10.1016/0039-6028(81)90321-6
[19] M. Witko, K. Hermann, D. Ricken, W. Stenzel, H. Conrad and A. M. Bradshaw, “The Electron Structure of the Surface Methoxy Species on Cu(111),” Chemical Physics, Vol. 177, No. 2, 1993, pp. 363-371. doi:10.1016/0301-0104(93)80018-5
[20] H. Yang, J. L. Whitten and C. M. Friend, “Adsorption of CH3O on Ni(111),” Surface Science, Vol. 313, No. 3, 1994, pp. 295-307. doi:10.1016/0039-6028(94)90050-7
[21] M. Witko and K. Hermann, “Site-Dependent Binding of Methoxy on Cu(111): Cluster Model Studies,” Journal of Chemical Physics, Vol. 101, No. 11, 1994, pp. 1017310180. doi:10.1063/1.468006
[22] G. C. Wang, Y. H. Zhoua, Y. Morikawa, J. Nakamura, Z. S. Cai and X. Z. Zhao, “Kinetic Mechanism oh Methanol Decomposition on Ni(111) Surface: A Theoretical Study,” Journal of Physical Chemistry B, Vol. 109, No. 25, 2005, pp. 12431-12442. doi:10.1021/jp0463969
[23] J. R. B. Gomes and J. A. N. F. Gomes, “Comparative Study of Geometry and Bonding Character for Methoxy Radical Adsorption on Noble Metals,” Journal of Molecular Structure (Theochem), Vol. 503, No. 3, 2000, pp. 189-200. doi:10.1016/S0166-1280(99)00286-9
[24] J. Greeley and M. Mavrikakis, “Competitive Paths for Methanol Decomposition on Pt(111),” Journal of American Chemical Society, Vol. 126, No. 10, 2004, pp. 3910-3919. doi:10.1021/ja037700z
[25] X. Y. Pang, C. Wang, Y. H. Zhou, J. M. Zhao and G. C. Wang, “DFT Study of the Structure Sensitivity for the Adsorption of Methyl, Methoxy, and Formate on Ni(111), Ni(100), and Ni(110) Surfaces,” Journal of Molecular Structure (Theochem), Vol. 948, No. 1-3, 2010, pp. 1-10. doi:10.1016/j.theochem.2010.01.034
[26] W. K. Chen, S. H. Liu, M. J. Cao, Q. G. Yan and C. H. Lu, “Adsorption and Dissociation of Methanol on Au(111) Surface: A First-Principles Periodic Density Functional Study,” Journal of Molecular Structure (Theochem), Vol. 770, No. 1-3, 2006, pp. 87-91. doi:10.1016/j.theochem.2006.05.040
[27] W. K. Chen, S. H. Liu, M. J. Cao, C. H. Lu, Y. Xu and J. Q. Li, “Adsorption of Methanol and Methoxy on Cu(111) Surface: A First-Principles Periodic Density Functional Theory Study,” Chinical Journal of Chemistry, Vol. 24, No. 7, 2006, pp. 872-876. doi:10.1002/cjoc.200690166
[28] S. Pick, “Density-Functional Study of the Methoxy Intermediates at Cu(111), Cu(110) and Cu(001) Surfaces,” Journal of Physics: Condensed Matterials, Vol. 22, No. 39, 2010, Article ID: 395002.
[29] K. Christmann, “Interaction of Hydrogen with Solid Surfaces,” Surface Science, Vol. 9, No. 1-3, 1988, pp. 1-163. doi:10.1016/0167-5729(88)90009-X
[30] G. A. Somorjai, “Introduction to Surface Chemistry and Catalysis,” Wiley-Interscience, New York, 1994.
[31] M. Schick, J. Lauterbach and W. Weinberg, “The CO Adsorption of Hydrogen and Potassium on Ir(111),” Surface Science, Vol. 360, No. 1-3, 1996, pp 255-260. doi:10.1016/0039-6028(96)00666-8
[32] H. Okuyama, T. Ueda, T. Aruga and M. Nishijima, “Overtones of H Vibrations at Ni(111): Formation of Delocalized States,” Physical Review B, Vol. 63, No. 23, 2001, pp. 233403-233406. doi:10.1103/PhysRevB.63.233403
[33] G. X. Cao, E. Nabighian and X. D. Zhu, “Diffusion of Hydrogen on Ni(111) over Wide Range of Temperature: Exploring Quantum Diffusion on Metals,” Physial Review Letters, Vol. 79, No. 19, 1997, pp. 3696-3699. doi:10.1103/PhysRevLett.79.3696
[34] A. E. Morgan and G. A. Somorjai, “LEED Studies of Gas Adsorption on the Platinum (100) Single Crystal Surface,” Surface Science, Vol. 12, No. 3, 1968, pp. 405-425. doi:10.1016/0039-6028(68)90089-7
[35] R. W. McCabe and L. D. Schmidt, “Adsorption on H2 and CO on Clean and Oxidized (110) Pt,” Surface Science, Vol. 60, No. 1, 1976, pp. 85-98. doi:10.1016/0039-6028(76)90008-X
[36] K. Christmann, G. Ertl and T. Pignet, “Adsorption of Hydrogen on a Pt(111) Surface,” Surface Science, Vol. 54, No. 2, 1976, pp. 365-392. doi:10.1016/0039-6028(76)90232-6
[37] J. R. Engstrom, W. Tsai and W. H. Weinberg, “The Chemisorption of Hydrogen on the Pt(111) and (110)-(1x2) Surfaces of Iridium and Platinum,” Journal of Chemical Physics, Vol. 87, No. 5, 1987, pp. 3104-3119. doi:10.1063/1.453048
[38] L. J. Richter, “Vibrational Spectroscopy of H on Pt(111): Evidence for Universally Soft Parallel Modes,” Physical Review B, Vol. 36, No. 18, 1987, pp. 9797-9800. doi:10.1103/PhysRevB.36.9797
[39] B. J. J. Koelman, S. T. de Zwart, A. L. Boers, B. Poelsema and L. K. Verheij, “Information on Adsorbate Positions from Low-Energy Recoil Scattering: Adsorption of Hydrogen on Pt,” Physical Review Letters, Vol. 56, No. 11, 1986, pp. 1152-1155. doi:10.1103/PhysRevLett.56.1152
[40] W. Di, K. E. Smith and S. D. Kevan, “Angle-Resolved Photoemission Study of the Clean and Hydrogen-Covered Pt(111) Surface,” Physical Review B, Vol. 45, No. 7, 1992, pp. 3652-3658. doi:10.1103/PhysRevB.45.3652
[41] B. E. Spiewak, R. D. Cotright and J. A. Dumesic, “Microcalorimetric Studies of H2, C2H4 and C2H2 Adsorption on Pt Powder,” Journal of Catalysis, Vol. 176, No. 2, 1998, pp. 405-414. doi:10.1006/jcat.1998.2047
[42] P. Nordlander, S. Holloway and J. K. N?rskov, “Hydrogen Adsorption on Metal Surfaces,” Surface Science, Vol. 136, No. 1, 1984, pp. 59-81. doi:10.1016/0039-6028(84)90655-1
[43] D. E. Jiang and E. A. Carter, “Adsorption and Diffusion Energetics of Hydrogen Atoms on Fe(110) from First Principles,” Surface Science, Vol. 547, No. 1-2, 2003, pp. 85-98. doi:10.1016/j.susc.2003.10.007
[44] P. Légaré, “A Theoretical Study of H Surface and Subsurface Species on Pt(111),” Surface Science, Vol. 559, No. 2-3, 2004, pp. 169-178. doi:10.1016/j.susc.2004.04.013
[45] F. Faglioni and W. A. Goddard III, “Energetics of Hydrogen Coverage on Group VIII Transition Metal Surfaces and Kinetic Model for Adsorption/Desorption,” Journal of Chemical Physics, Vol. 122, No. 1, 2005, Article ID: 014704. doi:10.1063/1.1814938.
[46] D. C. Ford, Y. Xu and M. Mavrikakis, “Atomic and Molecular Adsorption on Pt(111),” Surface Science, Vol. 587, No. 3, 2005, pp. 159-174. doi:10.1016/j.susc.2005.04.028
[47] F. Saad, M. Zemerli, M. Bennaki and S. Bouarab, “AbInitio Study of Coadsorption of Li and H on Pt(001), Pt(110) and Pt(111) Surfaces,” Physica B, Vol. 407, No. 4, 2012, pp. 698-704. doi:10.1016/j.physb.2011.12.005
[48] M. A. Petersen, S. J. Jenkins and D. A. King, “Theory of Methane Dehydrogenation on Pt{110} (1x2). Part I: Chemisorption of CHx (x = 0 - 3),” Journal of Physical Chemistry B, Vol. 108, No. 19, 2004, pp. 5909-5919. doi:10.1021/jp037880z
[49] P. S. Moussounda, M. F. Haroun, G. Rakotovelo and P. Légaré, “A Theoretical Study of CH4 Dissociation on Pt(100),” Surface Science, Vol. 601, No. 18, 2007, pp. 3697-3701. doi:10.1016/j.susc.2007.04.014
[50] W. Lai, D. Xie and D. H. Zhang, “First-Principles Study of Adsorption of Methyl, Coadsorption of Methyl and Hydrogen, and Methane Dissociation on Ni(100),” Surface Science, Vol. 594, No. 1-3, 2005, pp. 83-92. doi:10.1016/j.susc.2005.07.012
[51] J. Greeley and M. Mavrikakis, “A First-Principles Study of Surface and Subsurface H on and in Ni(111): Diffusional Properties and Coverage—Dependent Behavior,” Surface Science, Vol. 540, No. 2-3, 2003, pp. 215-229. doi:10.1016/S0039-6028(03)00790-8
[52] M. F. Haroun, P. S. Moussounda, P. Légaré and J. C. Parlebas, “Adsorption and Co-Adsorption of CH3 and H on Flat and Defective Nickel (111) Surfaces,” European Physical Journal B, Vol. 7, No. 3, 2010, pp. 353-358. doi:10.1140/epjb/e2010-10680-0
[53] P. G. Sundell and G. Wahnstr?m, “Hydrogen Tunneling on a Metal Surface: A Density-Functional Study of H and D Atoms on Cu(001),” Surface Science, Vol. 593, No. 1-3, 2005, pp. 102-109. doi:10.1016/j.susc.2005.06.051
[54] B. Hammer, L. B. Hansen and J. K. N?rkov, “Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals,” Physical Review B, Vol. 59, No. 11, 1999, pp. 7413-7421. doi:10.1103/PhysRevB.59.7413
[55] D. Vanderbilt, “Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism,” Physical Review B, Vol. 41, No. 11, 1990, pp. 7892-7895. doi:10.1103/PhysRevB.41.7892
[56] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, “PW91: Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Physical Review B, Vol. 46, No. 11, 1992, pp. 6671-6687. doi:10.1103/PhysRevB.46.6671
[57] D. R. Lide, “CRC Handbook of Chemistry and Physics,” CRC Press, Boca Raton, 1996.
[58] B. Xu, J. Haubrich, T. A. Baker, E. Kaxiras and C. M. Friend, “Theoretical Study of O-Assisted Selective Coupling of Methanol on Au(111),” Journal of Physical Chemistry, Vol. 115, No. 5, 2011, pp. 3703-3708. doi:10.1021/jp110835w
[59] F. Mehmood, A. Kara, T. S. Rahman and C. R. Henry, “Comparative Study of CO Adsorption on Flat, Stepped and Kinked Au Surfaces Using Density Functional Theory,” Physical Review B, Vol. 79, No. 7, 2009, Article ID: 075422.
[60] F. Herzberg, “Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules,” D. Van Nostrand Company, New York, 1945.
[61] P. S. Moussounda, “Adsorption et Activation du Méthane et du Méthanol sur la Surface (100) du Platine: Une Etude par la Fonctionnelle de la Densité,” Ph.D. Thesis, University of Louis Pasteur Strasbourg 1, Strasbourg, 2006.
[62] G. Kresse and J. Hafner, “First Principles Study of the Adsorption of Atomic H on the Ni(111), (100), (110) Surfaces,” Surface Science, Vol. 459, No. 3, 2000, pp. 287-302. doi:10.1016/S0039-6028(00)00457-X
[63] D. E. Jiang and E. A. Carter, “Diffusion of Interstitial Hydrogen into and through bcc Fe from First Principles,” Physical Review B, Vol. 70, No. 6, 2004, Article ID: 064102.
[64] F. C. Fabiani, G. Fratesi and G. P. Brivio, “Adsorption of H2S, HS, S and H on a Stepped Fe(310) Surface,” European Physical Journal B, Vol. 78, No. 4, 2010, pp. 455-460.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.