Synthesis and Characterization of Ferrate(VI) Alkali Metal by Electrochemical Method


This works aims at preparing at room stable Na2FeO4 and tracking its degradation over time. The synthetic, during this step, was carried out by electrochemical method. The latter was given maximum focus because of its simplicity and the high degree of purity of the resulting product with respect to wet and dry method. This paper reviews the development of the electrochemical method applied to the synthesis of stable at room Na2FeO4, optimizing the parameters impacting the performance of the oxidation of iron(II) in to iron(VI) in alkaline NaOH, saturated at a temperature of 61°C and a current density of 1.4 A/dm2, in order to simplify the synthesis process, to minimize the cost and to improve the production of iron(VI) to meet the growing demand of ferrate(VI) useful for water treatment. The supervision of the degradation of synthesized Na2FeO4 shows its stability over a period of 10 months, which makes storage and transport easier. The phases obtained were characterized by IR spectrometry, X-ray, M?ssbauer, spectroscopy and thermogravimeric analysis.

Share and Cite:

A. Maghraoui, A. Zerouale, M. Ijjaali and M. Sajieddine, "Synthesis and Characterization of Ferrate(VI) Alkali Metal by Electrochemical Method," Advances in Materials Physics and Chemistry, Vol. 3 No. 1, 2013, pp. 83-87. doi: 10.4236/ampc.2013.31013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B.Von Helferich, K. lang, Zeit. Anorg. Chem. 1950, Vol. 263, p. 169.
[2] R. J. Audette and J. W. Quail, “Potassium, Rubidium, Cesium, and Barium Ferrates(VI). Preparations, Infrared Spectra, and Magnetic Susceptibilities,” Inorganic Chemistry, Vol. 11, No. 8, 1972, p. 1904. doi:10.1021/ic50114a034
[3] E. F. Fremy, “Recherches sur les Acides Mètalliques,” Annales de Chimie et de Physique, 1844, pp. 361-382.
[4] W. Foster, “The Action of Alkaline Hypobromite on Oxamide, Urea and Potassuim Ferrocyanide,” Journal of Chemical Society, Vol. 35, 1879, pp. 119-124.
[5] Blattner, “Action des Oxydes Mètalliques sur les Hypochlorites a Lcalino-Terreux,” bull. Soc. Chim, mèmoires, Paris, Vol. 7, 1892, pp. 700-708.
[6] M. Muspratt and S. Smith, “Some Experiments upon High Strength Hypochlorite Solutions,” Journal of the Society of Chemical Industry, Vol. 17, 1898, pp. 1096-1100.
[7] W. F. Wagner, J. R. Gump and E. N. Hurt, “Factors Affecting Stability of Aqueous Potassium Ferrate(VI) Solutions,” Analytical Chemistry, 1952, Vol. 24, No. 9, pp. 1497-1498. doi:10.1021/ac60069a037
[8] J. C. Poggendorf, Pogg. Ann, Vol. 54, 1841, p. 161.
[9] G p. 161. Grube, H. G. Melin, Z. Elektrochem, 1920, Vol. 26, p. 153.
[10] G. Grube, Z. Elektrochem, Vol. 33, 1927, p. 389.
[11] B. Von Helferich, Kelang, Zeit. Anorg. Chem., 1950, Vol. 263, p. 169.
[12] H. Von Krebs, Z. Anorg. Chem, 1950, Vol. 263, p. 175.
[13] S. Licht, V. Naschitz, L. Halperin , N. Halperin, L. Lin, J. Chen, S. Ghosh and B. Liu, “Analysis of Ferrate(VI) Compounds and Super-Iron Fe(VI) Battery Cathodes: FTIR, ICP, Titrimetric, XRD, UV/VIS, and Electrochemical Characterization,” Journal of Power Sources, Vol. 101, No. 2, 2001, pp. 167-176. doi:10.1016/S0378-7753(01)00786-8
[14] Y. L. Wang, S. H. Ye, Y. Y. Wang, J. S. Cao and F. Wu, “Structural and Electrochemical Properties of a K2FeO4 Cathode for Rechargeable Li Ion Batteries,” Electrochimica Acta, Vol. 54, No. 16, 2009, pp. 4131-4135. doi:10.1016/j.electacta.2009.02.053
[15] W. C. He, J. M. Wang, H. B. Shao, J. Q. Zhang and C.-N. Cao, “Novel KOH Electrolyte for One-Step Electrochemical Synthesis of High Purity Solid K2FeO4: Comparison with NaOH,” Electrochemistry Communications, Vol. 7, No. 6, 2005, pp. 607-611. doi:10.1016/j.elecom.2005.04.011
[16] R. J. Audette, J. W. Quail, inorg. chim, Vol. 11, No. 8, 1972, p. 1904.
[17] N. Becarud, C. Duval. C. R. Acad. Sci, Vol. 257, 1963, p. 1930.
[18] F. Gonzalesvilchez, W. Griffith. J. Chem. Soc Dalton., 1972, p. 1416.
[19] W. Griffith, “Infrared Spectra of Tetrahedral Oxyanions of the Transition Metals,” Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1966, pp. 14671468. doi:10.1039/j19660001467
[20] P. Tarte and G. Nizet, “Etude Infra-Rouge de Quelques Composés du Type K2SO4 et BaSO4,” Spectrochimica Acta, Vol. 20, No. 3, 1964, pp. 503-513. doi:10.1016/0371-1951(64)80045-X
[21] R. Scholder, H. Bunsen, F. Kin, W. Zeiss and Z. Anorg, “Zur Kenntnis der Ferrate(VI),” Zeitschrift für Anorganische und Allgemeine Chemie, Vol. 282, No. 1-6, 1955, pp. 268-279. doi:10.1002/zaac.19552820129
[22] R. Scholder, Anges. Chem. Vol. 1, 1962, pp. 220-224.
[23] A. Ito and K. Ono, “Mössbauer Study of Fe6+ in Potassium Ferrate, K2FeO4,” Journal of the Physical Society of Japan, Vol. 26, 1969, p. 1548 doi:10.1143/JPSJ.26.1548
[24] T.Shinjo, T. Ichida and T. Takada, “Internal Magnetic Field at Fe in57 Hexavalent States,” Journal of the Physical Society of Japan, Vol. 26, 1969, p. 1547. doi:10.1143/JPSJ.26.1547
[25] T. Shinjo, T. Ichida, T. Takada, J. Phys. Soc. Japan, Vol. 29, No. 1, 1970, p. 111.
[26] G. Hoy, M. Corson, J. of magnetism and magnetic Materials, Vol. 15, No. 18, 1980, p. 627.
[27] F. Menil, “Systematic Trends of the 57Fe Mössbauer Isomer Shifts in (FeOn) and (FeFn) Polyhedra. Evidence of a New Correlation between the Isomer Shift and the Inductive Effect of the Competing Bond T-X (→Fe) (Where X Is O or F and T Any Element with a Formal Positive Charge),” Journal of Physics and Chemistry of Solids, Vol. 46, No. 7, 1985, pp. 763-789. doi:10.1016/0022-3697(85)90001-0

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.