Share This Article:

Modified Adomain Decomposition Method for the Generalized Fifth Order KdV Equations

Abstract Full-Text HTML XML Download Download as PDF (Size:117KB) PP. 53-58
DOI: 10.4236/ajcm.2013.31008    3,794 Downloads   6,752 Views   Citations
Author(s)    Leave a comment

ABSTRACT

New modified Adomian decomposition method is proposed for the solution of the generalized fifth-order Korteweg-de Vries (GFKdV) equation. The numerical solutions are compared with the standard Adomian decomposition method and the exact solutions. The results are demonstrated which confirm the efficiency and applicability of the method.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

H. Bakodah, "Modified Adomain Decomposition Method for the Generalized Fifth Order KdV Equations," American Journal of Computational Mathematics, Vol. 3 No. 1, 2013, pp. 53-58. doi: 10.4236/ajcm.2013.31008.

References

[1] H. Nagashima, “Experiment on Solitary Waves in the Nonlinear Transmission Line Discribed by the Equation ut+uuζ-uζζζζζ=0,” Journal of the Physical Society of Japan, Vol. 47, 1979, pp. 1387-1388. doi:10.1143/JPSJ.47.1387
[2] Y. Yamaoto and E. Takizawa, “On a Solution on Non-Linear Time—Evolution Equation of Fifth-Order,” Journal of the Physical Society of Japan, Vol. 50, 1981, pp. 1421-1422. doi:10.1143/JPSJ.50.1421
[3] T. Kawahrara, “Oscillatary Solitary Waves in Dispersive Media,” Journal of the Physical Society of Japan, Vol. 33, 1972, pp. 260-264. doi:10.1143/JPSJ.33.260
[4] J. P. Boyd, “Solitons from Sine Waves: Analytical and Numerical Methods for Non-Integrable Solitary and Conoidal Waves,” Physica 21D, 1986, pp. 227-246.
[5] S. E. Haupt and J. P. Boyd, “Modelling Nonlinear Resonance: A Modification to the Stokes Perturbation Expansion,” Wave Motion, Vol. 10, No. 1, 1988, pp. 83-98.
[6] K. Djidjeli, W. G. Price, E. H. Twizell and Y. Wang, “Numerical Methods for the Soltution of the Third and Fifth-Order Disprsive Korteweg-De Vries Equations,” Journal of Computational and Applied Mathematics, Vol. 58, No. 3, 1995, pp. 307-336. doi:10.1016/0377-0427(94)00005-L
[7] A. M. Wazwaz, “Analytic Study on the Generalized KdV Equation: New Solution and Periodic Solutions,” Elsevier, Amsterdam, 2006.
[8] M. T. Darvishi and F. Khani, “Numerical and Explicit Solutions of the Fifth Order Korteweg-De Vries Equations,” Elsevier, Amsterdam, 2007.
[9] G. Adomian, “Solving Frontier Problems of Physics: The Decomposition Method,” Kluwer Academic Publisher, Dordrecht, 1994.
[10] D. Kaya, “The Use of Adomian Decomposition Methods for Solving a Specific Nonlinear Partial Differential Equations,” Bulletin of the Belgian Mathematical Society Simon Stevin, Vol. 9, No. 3, 2002, pp. 343-349.
[11] G. Adomian, “The Fifth-Order Korteweg-De Vries Equation,” International Journal of Mathematics and Mathematical Sciences, Vol. 19, No. 2, 1996, p. 415. doi:10.1155/S0161171296000592
[12] D. Kaya, “An Explicit and Numerical Solutions of Some Fifth-Order KdV Equation by Decomposition Method,” Applied Mathematics and Computation, Vol. 144, No. 2-3, 2003, pp. 353-363. doi:10.1016/S0096-3003(02)00412-5
[13] D. Kaya, “An Application for the Higher Order Modified KdV Equation by Decomposition Method,” Communications in Nonlinear Science and Numerical Simulation, Vol. 10, No. 6, 2005, pp. 693-702. doi:10.1016/j.cnsns.2003.12.009
[14] D. Kaya and S. M. El-Sayed, “On a Generalized Fifth Order KdV Equations,” Physics Letters A, Vol. 310, No. 1, 2003, pp. 44-51. doi:10.1016/S0375-9601(03)00215-9
[15] M. A. Helal and M. S. Mehanna, “A Comparative Study between Two Different Methods for Solving the General Korteweg-De Vries Equation (GKDV),” Chaos, Solitons & Fractals, Vol. 33, No. 3, 2007, pp. 725-739. doi:10.1016/j.chaos.2006.11.011
[16] A. M. Wazwaz, “A Reliable Technique for Solving Linear and Nonlinear Schrodinger Equations by Adomian Decompostion Method,” Bulletin of the Institute of Mathematics, Vol. 29, No. 2, 2001, pp. 125-134.
[17] A. M. Wazwaz and S. M. El-Sayed, “A New Modification of the Adomian Decoomposition Method for Linear and Nonlinear Operators,” Applied Mathematics and Computations, Vol. 122, 2001, pp. 393-405.
[18] A. M. Wazwaz, “Partial Differential Equations and Solitary Waves Theory,” Higher Education Press, Beijing; Spinger-Verlag, Berlin, 2009.
[19] K. Sawada and T. Kotera, “A Method for Finding N-Soliton Solutions of the KdV. Equation and the KbV-Like Equation,” Progress of Theoretical Physics, Vol. 51, No. 5, 1974, pp. 1355-1367. doi:10.1143/PTP.51.1355
[20] P. J. Coudery, R. K. Dodd and J. D. Gibbon, “A New Hierarchy of Korteweg-De Vries Equations,” Proceedings of the Royal Society A, Vol. 351, No. 1666, 1976, pp. 407-422. doi:10.1098/rspa.1976.0149
[21] P. D. Lax, “Integrals of Nonlinear Equations of Evolution and Solitary Waves,” Communications on Pure and Applied Mathematics, Vol. 21, No. 5, 1968, pp. 467-490. doi:10.1002/cpa.3160210503
[22] D. J. Kaup, “On the Iverse Scattering Problem for Cubic Eigenvalue Problems of the Class Ψxxx+6QΨx+6RΨ=λΨ,” Studies in Applied Mathematics, Vol. 62, 1980, pp. 189-216.
[23] B. A. Kuperschmidt, “A Super KdV Equation: An Integral System,” Physics Letters A, Vol. 102, No. 5-6, 1984, pp. 213-215. doi:10.1016/0375-9601(84)90693-5
[24] M. Ito, “An Extension of Nonlinear Evolution Equations of the KdV (mKdV) Type of Higher Orders,” Journal of the Physical Society of Japan, Vol. 49, No. 2, 1980, pp. 771-778. doi:10.1143/JPSJ.49.771
[25] Y. Lei, Z. Fajiang and W. Yinghai, “The Homogeneous Balance Method, Lax Pair Hirota Transformation and a General Fifth Order KdV Equation,” Chaos Solutions Fractals, Vol. 13, 2002, p. 337.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.