Diversity and Bioactivity of Cultivable Animal Fecal Actinobacteria


Microbial symbionts play important roles in food digestion and absorption, immunity, pathogens resistance, and health maintaining of their hosts by coevolution. To provide new sources for discovering new leader compounds of drugs, the diversity and bioactivities of cultivable actinobacteria from animal feces have been studied. 31 species of animal fecal samples were collected fromYunnanWildAnimalPark. The purified cultures of actinobacteria were isolated from these samples by using 5 media. The 16S rRNA gene sequences of 528 selected strains were determined, the phylogenetic analysis was carried out, and anti-microbial and anti-tumor activities were determined. 35 genera (including a new genus, Enteractinococcus) of actinobacteria from the 31 species of animal feces were identified. Some strains had high anti-tumor and antimicrobial activities. More than 50 secondary metabolites were isolated and identified, a novel bioactive macrolactam polyketide glycoside, Sannastatin, was found. Nine fecal streptomycete strains were fermented respectively, blended to the microbial manure, and used to prophylaxis and treatment of soil-borne disease of notoginseng in field. The incidence rate of the disease was lower 81% than agricultural chemicals. Fecal actinobacteria, a possibility as a new source for discovering drug leader, agricultural chemicals and other industry products, will be discussed.

Share and Cite:

Y. Jiang, L. Han, X. Chen, M. Yin, D. Zheng, Y. Wang, S. Qiu and X. Huang, "Diversity and Bioactivity of Cultivable Animal Fecal Actinobacteria," Advances in Microbiology, Vol. 3 No. 1, 2013, pp. 1-13. doi: 10.4236/aim.2013.31001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. C. Savage, “Microbial Ecology of Gastrointestinal Tract,” Annual Review of Microbiology, Vol. 31, 1977, pp. 107-133. doi:10.1146/annurev.mi.31.100177.000543
[2] J. M. Simpson, B. Martineau, W. E. Jones, J. M. Ballam and R. I. Mackie, “Characterization of Fecal Bacterial Population in Canines: Effecs of Age, Breed and Dietary Fiber,” Microbial Ecology, Vol. 44, No. 2, 2002, pp. 186-197. doi:10.1007/s00248-002-0001-z
[3] K. Daly, C. S. Stewart, H. J. Flint and S. P ShiraziBeechey, “Bacterial Diversity within the Equine Large Intestine as Revealed by Molecular Analysis of Cloned 16S rRNA Genes,” FEMS Microbiology Ecology, Vol. 38, No. 2-3, 2001, pp. 141-151. doi:10.1111/j.1574-6941.2001.tb00892.x
[4] L. M. Durso, G. P. Harhay, T. P. L. Smith, J. L. Bono, T. Z. DeSantis, D. M. Harhay, G. L. Anderson, J. E. Keen, W. W. Laegreid and M. L. Clawson, “Animal-to-Animal Variation in Fecal Microbial Diversity among Beef Cattle,” Applied and Environmental Microbiology, Vol. 76, No. 14, 2010, pp. 4858-4862. doi:10.1128/AEM.00207-10
[5] R. C. Gao. Z. X. Huang, C. F. Wu, B. Xu and X. Y. Wang, “Culture-Independent Analysis of Microflora in Gayals (Bos Frontalis) Feces,” African Journal of Biotechnology, Vol. 9, No. 19, 2010, pp. 2774-2788.
[6] H. J. Greetham, C. Giffard, R. A. Hutson, M. D. Collins and G. R. Gibson, “Becteriology of the Laborador Dog Gut: A Cultural and Genotypic Approach,” Journal of Applied Microbiology, Vol. 93, No. 4, 2002, pp. 640-646. doi:10.1046/j.1365-2672.2002.01724.x
[7] L. E. Ritchie, J. M. Steiner and J. S. Suchodoski, “Assessment of Microbial Diversity along the Feline Interatinal Trct Using 16S Rrna Gene Analysis,” FEMS Microbiology Ecology, Vol. 66, No. 3, 2008, pp. 590-598. doi:10.1111/j.1574-6941.2008.00609.x
[8] J. S. Suchodoski, J. Camacho and J. M. Steiner, “Analysis of Bacterial Diversity in the Canine, Duodenum, Jejunum, Ileum, and Colon by Comparative 16S rRNA Gene Analysis,” FEMS Microbiology Ecology, Vol. 66, No. 3, 2008, pp. 567-578. doi:10.1111/j.1574-6941.2008.00521.x
[9] M. M. Curtis and V. Sperandio, “A Complex Relationship: The Interaction among Symbiotic Microbes, Invading Pathogens, and Their Mammalian Host,” Mucosal Immunology, Vol. 4, No. 2, 2011, pp. 133-138. doi:10.1038/mi.2010.89
[10] L. V. Hooper and J. I. Gorden, “Commensal Host-Bacyrtial Relationship in the Gut,” Science, Vol. 292, No. 5519, 2001, pp. 1115-1118. doi:10.1126/science.1058709
[11] M. Falagas, G. I. Betsi and S. Athanasiou, “Probiotics for Prevention of Recurrent Vulvovaginal Candidiasis: A Review,” Journal of Applied Microbiology, Vol. 58, No. 2, 2006, pp. 266-272. doi:10.1093/jac/dkl246
[12] A. Meyer, M. Micksche, I. Herbacek and I. Elmadfa, “Daily Intake of Probiotic as Well as Conventional Yogurt has a Stimulating Effect on Cellular Immunity in Young Healthy Women,” Annals of Nutrition and Metabolism, Vol. 50, No. 3, 2006, pp. 282-289. doi:10.1159/000091687
[13] Y. Jiang, P. Xu, K. Lou, L. H. Xu and Z. H. Liu, “Problem and Countermeasure on Development of Pharmaceuticals from Actinomycete Resources,” Microbiology, Vol. 35, No. 2, 2008, pp. 272-274.
[14] D. J. Payne, J. Bradley, J. E. Edwards, D. G. Scheld and J. G. Bartlett, “Drugs from Bad Bugs: Confronting the Challenges of Antibacterial Discovery,” Nature Reviews: Drug Discovery, Vol. 6, No. 1, 2007, pp. 29-40. doi:10.1038/nrd2201
[15] J. Berdy, “Bioactive Microbial Metabolites,” The Journal of Antibiotics, Vol. 58, No. 1, 2005, pp. 1-26. doi:10.1038/ja.2005.1
[16] R. H. Baltz, “Renaissance in Antibacterial Discovery from Actinomycetes,” Current Opinion in Pharmacology, Vol. 8, No. 5, 2008, pp. 1-7. doi:10.1016/j.coph.2008.04.008
[17] Y. Jiang, Y. R. Cao, J. Wiese, K. Lou, L. X. Zhao, J. F. Imhoff and C. L. Jiang, “A New Approach of Research and Development on Pharmaceuticls from Actinomycetes,” Journal of Life Science US, Vol. 3, No. 7, 2009, pp. 52-56.
[18] P. R. Jensen, “Linking Species Concepts to Natural Product Discovery in the Post-Genomic Era,” Journal of Industrial Microbiology & Biotechnology, Vol. 37, No. 3, 2010, pp. 219-224. doi:10.1007/s10295-009-0683-z
[19] L. H. Xu, W. J. Li, Z. H. Liu and C. L. Jiang, “Actinomycete Taxonomy,” Acedemic Press, Beijing, 2007.
[20] B. L. Beman, M. Goodfellow, M. Mordarski and S. T. Williams, “Actinomycete Pathogen in the Biology of the Actinomyces,” Academic press, London, 1983.
[21] Y. Jiang, Y. R. Cao, L. Han, R. X. Jin, D. Zheng, W. X. He, Y. L. Li and X. S. Huang, “Diversity and Bioactivity of Culturable Actinobacteria from Animal Feces,” Acta Microbiol Sinica, Vol. 52, No. 10, 2012, pp. 1282-1289.
[22] E. H. Shirling and D. Gottlieb, “Methods for Characterization of Streptomyces Species,” International Journal of Systematic and Evolutionary Macrobiology, Vol. 16, No. 3, 1966, pp. 313-340. doi:10.1099/00207713-16-3-313
[23] X. L. Cui, P. H. Mao, M. Zeng, L. H. Xu and C. L. Jiang, “Streptomonospora Salina Gen. Nov., Sp. Nov., A New Member of the Family Nocardiopsaceae,” International Journal of Systematic and Evolutionary Macrobiology, Vol. 51, No. 2, 2001, pp. 357-363.
[24] N. Saitou and M. Nei, “The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees,” Molecular Biology and Evolution, Vol. 4, No. 4, 1987, pp. 406-425.
[25] J. Felsenstein, “Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach,” Journal of Molecular Evolution, Vol. 17, No. 6, 1981, pp. 368-376. doi:10.1007/BF01734359
[26] I. González, A. Ayuso-Sacido, A. Anderson, O. Genilloud, “Actinomycetes Isolated from Lichens: Evaluation of Their Diversity and Detection of Biosynthetic Gene Sequences,” FEMS Microbiology Ecology, Vol. 54, No. 3, 2005, pp. 401-415. doi:10.1016/j.femsec.2005.05.004
[27] Y. B. Hwang, M. Y. Lee, H. J. Park, K. Han and E. S. Kim, “Isolation of Putative Polyene-Producing Actinomycetes Strains via PCR-Based Genome Screening for Polyene-Specific Hydroxylase Genes,” Process Biochemistry, Vol. 42, No. 1, 2007, pp. 102-107. doi:10.1016/j.procbio.2006.06.031
[28] H. T. Zhang, A. M. Liu, L. Z. Wu, G. Z. Sun, F. Han, Q. J. Gao, Y. Q. Zhang and Y. G. Wang, “Screening of AHBA Synthase Gene and Discovery of Actinomycin D Production in Streptomyces Violaceusniger 4353,” Journal of Chinese Antibiotics, Vol. 34, No. 1, 2009, pp. 30-33.
[29] S. N. R. Gundlapally and G. P. Ferran, “Description of Patulibacter Americanus Sp. Nov., Isolated from Biological Soil Crusts, Emended Description of the Genus Patulibacter Takahashi et al. 2006 and Proposal of Solirubrobacterales ord. nov. and Thermoleophilales ord. nov,” International Journal of Systematic and Evolutionary Macrobiology, Vol. 59, No. 1, 2009, pp. 87-94.
[30] H. Rheims, P. Schumann, M. Rohde and E. Stackebrandt, “Verrucosispora Gifhornensis Gen. Nov., sp. Nov., A New Member of the Actinobacterial Family Micromonosporaceae,” International Journal of Systematic and Evolutionary Macrobiology, Vol. 48, No. 4, 1998, pp. 1119-1127. doi:10.1099/00207713-48-4-1119
[31] W. J. Li. X. Y. Zhi and J. P. Euzéby, “Proposal of Yaniellaceae Fam. Nov., Yaniella Gen. Nov. and Sinobaca Gen. Nov. as Replacements for the Illegitimate Prokaryotic Names Yaniaceae Li et al. 2005, Yania Li et al. 2004, Emend Li et al. 2005 and Sinococcus Li et al. 2006, Respectively,” International Journal of Systematic and Evolutionary Macrobiology, Vol. 58, No. 2, 2008, pp. 525-527. doi:10.1099/ijs.0.65792-0
[32] S. K. Tang, X. Y. Zhi, Y. Wang, R. Shi, K. Lou, L. H. Xu and W. J. Li, “Haloactinopolyspora Alba gen. nov., sp. nov., A Halophilic Filamentous Actinomycete Isolated from a Salt Lake, with Proposal of Jiangellaceae fam. nov. and Jiangellineae Subord. Nov,” International Journal of Systematic and Evolutionary Macrobiology, Vol. 61, No. 1, 2011, pp. 194-200. doi:10.1099/ijs.0.021725-0
[33] Y. R. Cao, Y. Jiang, R. X. Jin, L. Han, W. X. He, Y. L. Li, X. S. Huang and Q. H. Xue, “Enteractinococcus Coprophilus gen. nov., sp. nov., of the Family Micrococcaceae Isolated from Panthera Tigris Amoyensis Feces, Transfer of Yaniella Fodinae Dhanjal et al. 2011 to the Genus Enteractinococcus as Enteractinococcus Fodinae comb. Nov.,” International Journal of Systematic and Evolutionary Macrobiology, Vol. 62, No. 11, 2012, pp. 2710-2716. doi:10.1099/ijs.0.034249-0
[34] Y. R. Cao, Y. Jiang and L. H. Xu, “Actinomycete Composition and Bioactivities in Grand Shangri-La,” Acta Microbiol Sinica, Vol. 49, No. 1, 2009, pp. 105-109.
[35] Y. R. Cao, Y. Jiang, Q. Wang, L. X. Zhao, R. X. Jin and C. L. Jiang, “Diversity and some Bioactivities of Cultured Actinomycetes in four Areas in Sichuan and Yunnan,” Acta Microbiol Sinica, Vol. 50, No. 8, 2010, pp. 995-1000.
[36] Y. Jiang, J. Wiese, Y. R. Cao, L. X. Zhao, R. X. Jin and J. F. Imhoff, “Diversity of Cultured Actinomycete in the Baltic Sea,” Acta Microbiol Sinica, Vol. 51, No. 11, 2011, pp. 1461-1457.
[37] Y. Jiang, W. J. Li, P. Xu, S. K. Tang and L. H. Xu, “Study on Actinomycete Diversity under Salt and Alkaline Environments,” Acta Microbiol Sinica, Vol. 46, 2006, pp. 191-195.
[38] M. P. Lechevalier and H. A. Lechevalier, “Chemical Composition as a Criterion in the Classification of Aerobic Actinomycetes,” International Journal of Systematic and Evolutionary Macrobiology, Vol. 20, No. 4, 1970, pp. 435-443. doi:10.1099/00207713-20-4-435
[39] M. P. Lechevalier and H. A. Lechevalier, “The Chemotaxonomy of Actinomycetes,” In: A. Dietz and D. W. Thayer, Eds., Actinomycete Taxonomy, Special Publications Society for Industrial Microbiology, Arlington, 1980, pp. 227-291.
[40] M. Goodfellow and H. P. Fiedler, “A Guide to Successful Bioprospecting: Informed by Actinobacterial Systematics,” Antonie van Leeuwenhoek, Vol. 98, No. 2, 2010, pp. 119-142. doi:10.1007/s10482-010-9460-2
[41] S. X. Yang, J. M. Gao. A. L. Zhang and H. Laatsch, “Sannastatin, a Novel Toxic Macrolactam Polyketide Glycoside Produced by Actinomycete Streptomyces Sannanensis,” Bioorganic & Medicinal Chemistry Letters, Vol. 21, No. 13, 2011, pp. 3905-3908. doi:10.1016/j.bmcl.2011.05.028
[42] S. Omura, H. Ikeda, J. Ishikawa, et al., “Genome Sequence of an Industrial Microorganism Streptomyces Avermitilis: Deducing the Ability of Producing Secondary Metabolites,” PNAS, Vol. 98, No. 21, 2001, pp. 12215-12220. doi:10.1073/pnas.211433198
[43] S. D. Bentley, K. F. Chater, A.-M. Cerdeno-Tarraga, et al., “Complete Genome Sequence of the Model Actinomycete Streptomyces Coelicolor A3(2),” Nature, Vol. 417, 2002, pp. 141-147. doi:10.1038/417141a
[44] P. M. Michael, L. W. Rene, W. L. H. William, et al., “The Complete Genome of Rhodococcus sp. RHA1 Provides Insights into a Catabolic Powerhouse,” PNAS, Vol. 103, No. 42, 2006, pp. 15582-15587. doi:10.1073/pnas.0607048103

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.