Chemical Sensitivity of Luminescent Epitaxial Surface InP Quantum Dots


Surface InP quantum dots grown by gas source molecular beam epitaxy on In0.48Ga0.52P buffer layer lattice matched to GaAs substrate shows a broad-band near-infrared photoluminescence ranging from 750 to 865 nm dependent on their dimensions. A reversible luminescence intensity enhancement has been observed when the quantum dots were exposed to vapours of different chemical solvents with the highest sensitivity for alcohol (methanol and ethanol) vapours. The luminescent behaviour is dependent on the solvent type and concentration. The peak energy and band shape of the luminescence are not affected by the solvent vapour.

Share and Cite:

R. Angelis, M. Casalboni, I. Colantoni, L. D’Amico, F. Matteis, F. Hatami, W. Masselink and P. Prosposito, "Chemical Sensitivity of Luminescent Epitaxial Surface InP Quantum Dots," Journal of Sensor Technology, Vol. 3 No. 1, 2013, pp. 1-5. doi: 10.4236/jst.2013.31001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Alivisatos, “The Use of Nanocrystals in Biological Detection,” Nature Biotechnology, Vol. 22, No. 1, 2004, pp. 47-52. doi:10.1038/nbt927
[2] J. M. Costa-Fernández, R. Pereiro and A. Sanz-Medel, “The Use of Luminescent Quantum Dots for Optical Sensing,” Trends in Analytical Chemistry, Vol. 25, No. 3, 2006, pp. 207-218. doi:10.1016/j.trac.2005.07.008
[3] R. C. Somers, M. G. Bawendi and D. G. Nocera, “CdSe Nanocrystal Based Chem-/Bio-Sensors,” Chemical Society Reviews, Vol. 36, No. 4, 2007, pp. 579-591. doi:10.1039/b517613c
[4] P. Jorge, M. A. Martins, T. Trinidade, J. L. Santos and F. Faramarz, “Optical Fiber Sensing Using Quantum Dots,” Sensors, Vol. 7, No. 12, 2007, pp. 3489-3534. doi:10.3390/s7123489
[5] M. F. Frasco and N. Chaniotakis, “Semiconductor Quantum Dots in Chemical Sensors and Biosensors,” Sensors, Vol. 9, No. 9, 2009, pp. 7266-7286. doi:10.3390/s90907266
[6] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke and T. Nann, “Quantum Dots versus Organic Dyes as Fluorescent Labels,” Nature Methods, Vol. 5, No. 9, 2008, pp. 763-775. doi:10.1038/nmeth.1248
[7] A. Y. Nazzal, L. Qu, X. Peng and M. Xiao, “Photoactivated CdSe Nanocrystals as Nanosensors for Gases,” Nano Letters, Vol. 3, No. 6, 2003, pp. 819-822. doi:10.1021/nl0340935
[8] A. Y. Nazzal, X. Wang, L. Qu, W. Hu, Y. Wang, X. Peng and M. Xiao, “Environmental Effects on Photoluminescence of Highly Luminescent CdSe and CdSe/ZnS Core/Shell Nanocrystals in Polymer Thin Films,” Journal of Physical Chemistry B, Vol. 108, No. 18, 2004, pp. 5507-5515.
[9] R. A. Potyrailo and A. M. Leach, “Selective Gas Nanosensors with Multisize CdSe Nanocrystal/Polymer Composite Films and Dynamic Pattern Recognition,” Applied Physics Letters, Vol. 88, No. 13, 2006, Article ID: 134110. doi:10.1063%2F1.2190272
[10] O. V. Vassiltsova, Z. Zhao, M. A. Petrukhina and M. A. Carpenter, “Surface-Functionalized CdSe Quantum Dots for the Detection of Hydrocarbons,” Sensors and Actuators B: Chemical, Vol. 123, No. 1, 2007, pp. 522-529. doi:10.1016%2Fj.snb.2006.09.053
[11] Z. Zhao, M. Arrandale, O. V. Vassiltsova, M. A. Petrukhina and M. A. Carpenter, “Sensing Mechanism Investigation on Semiconductor Quantum Dot/Polymer Thin Film Based Hydrocarbon Sensor,” Sensors and Actuators B: Chemical, Vol. 141, No. 1, 2009, pp. 26-33. doi:10.1016%2Fj.snb.2009.06.036
[12] M. Hasani, A. M. Coto-García, J. M. Costa-Fernández and A. Sanz-Medel, “Sol-Gels Doped with PolymerCoated ZnS/CdSe Quantum Dots for the Detection of Organic Vapors,” Sensors and Actuators B: Chemical, Vol. 144, No. 1, 2010, pp. 198-202. doi:10.1016%2Fj.snb.2009.10.066
[13] T. Li, Y. Zhou, J. Sun and K. Wu, “Ultrasensitive Detection of Glyphosate Using CdTe Quantum Dots in SolGel-Derived Silica Spheres Coated with Calix[6]arene as Fluorescent Probes,” American Journal of Analytical Chemistry, Vol. 3, No. 1, 2012, pp. 12-18.
[14] Z. Zhao, T. M. Dansereau, M. A. Petrukhina and M. A. Carpenter, “Nanopore-Array-Dispersed Semiconductor Quantum Dots as Nanosensors for Gas Detection,” Applied Physics Letters, Vol. 97, No. 11, 2010, Article ID: 113105.
[15] F. Seker, K. Meeker, T. F. Kuech and A. B. Ellis, “Surface Chemistry of Prototypical Bulk II-VI and III-V Semiconductors and Implication for Chemical Sensing,” Chemical Reviews, Vol. 100, No. 7, 2000, pp. 2505-2536. doi:10.1021%2Fcr980093r
[16] R. De Angelis, M. Casalboni, F. Hatami, A. Ugur, W. T. Masselink and P. Prosposito, “Vapour Sensing Properties of InP Quantum Dot Luminescence,” Sensors and Actuators B: Chemicals, Vol. 162, No. 1, 2012, pp. 149-152. doi:10.1016%2Fj.snb.2011.12.052
[17] R. De Angelis, L. D’Amico, M. Casalboni, F. Hatami, W. T. Masselink and P. Prosposito, “Surface InP Quantum Dots: Effect of Morphology on the Photoluminescence Sensitivity,” Procedia Engineering, Vol. 47, 2012, pp. 1251-1254. doi:10.1016%2Fj.proeng.2012.09.380
[18] K. Hestroffer, J. W. Tomm, A. Ugur, R. Braun and F. Hatami, “Properties and Carrier Dynamics of Surface InP/In0.48Ga0.52P Quantum Dots Grown by Gas-Source Molecular Beam Epitaxy,” E-MRS 2011, Symposium G, Nice, 2011.
[19] A. R. Go?i, C. Kristukat, F. Hatami, S. Dre?ler, W. T. Masselink and C. Thomsen, “Electronic Structure of SelfAssembled InP/GaP Quantum Dots for High Pressure Photoluminescence,” Physical Reviews B, Vol. 67, No. 7, 2003, Article ID: 075301. doi:10.1103%2FPhysRevB.67.075306
[20] F. Hatami, W. T. Masselink, L. Schrottke, J. W. Tomm, V. Talalaev, C. Kristukat and A. R. Go?i, “InP Quantum Dots Embedded in GaP: Optical Properties and Carrier Dynamics,” Physical Reviews B, Vol. 67, No. 8, 2003, Article ID: 85306. doi:10.1103%2FPhysRevB.67.085306
[21] A. Ugur, F. Hatami, W. T. Masselink, A. N. Vamivakas, L. Lombez and M. Atature, “Single-Dot Optical Emission from Ultralow Density Well-Isolated InP Quantum Dots,” Applied Physics Letters, Vol. 93, No. 14, 2008, Article ID: 143111.
[22] A. Ugur, F. Hatami, M. Schmidbauer, M. Hanke and W. T. Masselink, “Self-Assembled Chains of Single Layer InP/(In,Ga)P Quantum Dots on GaAs (001),” Journal of Applied Physics, Vol. 105, No. 12, 2009, Article ID: 124308.
[23] A. Ugur, F. Hatami, A. N. Vamivakas, L. Lombez, M. Atatüre, K. Volz and W. T. Masselink, “Highly Polarized Self-Assembled Chains of Single-Layer InP/(In,Ga)P Quantum Dots,” Applied Physics Letters, Vol. 97, No. 25, 2010, Article ID: 253113.
[24] A. Ugur, F. Hatami and W. T. Masselink, “Controlled Growth of InP/In0.48Ga0.52P Quantum Dots on GaAs Substrate,” Journal of Crystal Growth, Vol. 323, No. 1, 2011, pp. 228-232. doi:10.1016%2Fj.jcrysgro.2011.01.033
[25] Gwyddion, Free SPM (AFM, SNOM/NSOM, STM, MFM, …), “Data Analysis Software,”
[26] National Institute of Standards and Technology.
[27] M. G. Bawendi, P. J. Carrol, W. L. Wilson and L. E. Brus, “Luminescence Properties of CdSe Quantum Crystallites: Resonance between Interior and Surface Localized States,” Journal of Chemical Physics, Vol. 96, No. 2, 1992, pp. 946-954. doi:10.1063%2F1.462114
[28] X. Wang, L. Qu, J. Zhang, X. Peng and M. Xiao, “Surface-Related Emission in Highly Luminescent CdSe Quantum Dots, ” Nano Letters, Vol. 3, No. 8, 2002, pp. 1103-1106. doi:10.1021/nl0342491
[29] R. De Angelis, L. D’Amico, M. Casalboni, F. Hatami, W. T. Masselink and P. Prosposito, “Photoluminescence Sensitivity to Methanol Vapours of Surface InP Quantum Dot: Effect of Dot Size and Coverage,” Sensors and Actuators B: Chemicals. doi:0.1016/j.snb.2013.01.057

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.