Effects of Single Administered Bofutsushosan-Composed Crude Drugs on Diabetic Serum Parameters in Streptozotocin-Induced Diabetic Mice

DOI: 10.4236/cm.2013.41005   PDF   HTML   XML   3,064 Downloads   5,569 Views   Citations

Abstract

The 18 crude drugs in Bofutsushosan (BOF: Pulvis ledebouriellae compositae: 防風通聖散) are separated into 6 groups such as diaphoretic, cathartic, antidote, antipyretic, neutralizer and diuretic groups. The effects of single administered BOF and composed crude drugs in 6 groups were investigated on the levels of diabetic parameters (serum glucose, insulin, triglyceride and cholesterol) in streptozotocin-induced diabetic mice. The anti-hyperglycemic action of BOF was depended on Ephedrae Herba, Saposhnikoviae Radix and Schizonepetae Spica in diaphoretic group, Forsythiae Fructus, Saposhnikoviae Radix, Schizonepetae Spica and Cnidii Rhizoma in antidote group, Scutellariae Radix, Gardeniae Fructus and Gypsum Fibrosum in antipyretic group and Paeoniae Radix in neutralizer group. In these crude drugs, Ephedrae Herba, Saposhnikoviae Radix, Schizonepetae Spica, Forsythiae Fructus, Scutellariae Radix, Gypsum Fibrosum and Paeoniae Radix increased serum insulin level, but Cnidii Rhizoma and Gardeniae Fructus did not affect serum insulin level. From these results, it suggested that anti-hyperglycemic action of BOF was through insulin-dependent and insulin independent manners. The lowering effect of BOF on serum triglyceride level was dependent on actions of Platycodi Radix in antidote and diuretic groups and Gardeniae Fructus in antipyretic group. The lowering effect of Gardeniae Fructus was parallel with its anti-hyperglycemic action. The lowering effect of BOF on high serum triglyceride level also included both direct action and indirect action. The reducing effect of BOF on serum cholesterol level was observed together with the actions of Ephedrae Herba and Zingiberis Rhizoma in diaphoretic group, Schizonepetae Spica in diaphoretic and antidote groups and Paeoniae Radix in neutralizer group. The lowering effects of Ephedrae Herba, Schizonepetae Spica and Paeoniae Radix on serum cholesterol level were parallel with their anti-hyperglycemic actions. Zingiberis Rhizoma in diaphoretic group might be direct reducing effect on serum cholesterol level but no serum glucose level. The Ephedrae Herba in diaphoretic group, Schizonepetae Spica in diaphoretic and antidote groups and Paeoniae Radix in neutralizer group might have reduced serum cholesterol level by reducing blood glucose level. From these results, composed crude drugs in 6 groups show various mechanisms in the action of BOF.

Share and Cite:

Q. Yu, T. Takahashi, M. Nomura, M. Yasuda, K. Obatake-Ikeda and S. Kobayashi, "Effects of Single Administered Bofutsushosan-Composed Crude Drugs on Diabetic Serum Parameters in Streptozotocin-Induced Diabetic Mice," Chinese Medicine, Vol. 4 No. 1, 2013, pp. 24-31. doi: 10.4236/cm.2013.41005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Hasani-Ranjbar, B. Larijani and M. Abdollahi, “A Systematic Review of Iranian Medicinal Plants Useful in Diabetes Mellitus,” Archives of Medical Science, Vol. 4, No. 3, 2008, pp. 285-292.
[2] J. Yin, H. Zhang and J. Ye, “Traditional Chinese Medicine in Treatment of Metabolic Syndrome,” Endocrine, Metabolic & Immune Disorders Drug Targets, Vol. 8, No. 2, 2008, pp. 99-111. doi:10.2174/187153008784534330
[3] K. Ohno, H. W. Chung, I. Maruyama and T. Tani, “Bofutsushosan, a Traditional Chinese Formulation, Prevents Intimal Thickening and Vascular Smooth Muscle Cell Proliferation Induced by Balloon Endothelial Denudation in Rats,” Biological & Pharmaceutical Bulletin, Vol. 28, No. 11, 2005, pp. 2162-2165. doi:10.1248/bpb.28.2162
[4] T. Yoshida, N. Sakane, Y. Wakabayashi, T. Umekawa and M. Kondo, “Thermogenic Antiobesity Effects of Bofutsushosan in MSG Obese Mice,” International Journal of Obesity and Related Metabolic Disorders, Vol. 19, No. 10, 1995, pp. 717-722.
[5] Y. Morimoto, M. Sakata, A. Ono, T. Maegawa and S. Tajima, “Effects of Bofutsushosan, a Traditional Chinese Medicine, on Body Fat Accumulation in Fructose-Loaded Rats,” Nippon Yakurigaku Zasshi, Vol. 117, No. 1, 2001, pp. 77-86. doi:10.1254/fpj.117.77
[6] Y. Morimoto, M. Sakata, A. Ohno, T. Maegawa and S. Tajima, “Effects of Byakkokaninjinto, Bofutsushosan and Goreisan on Blood Glucose Level, Water Intake and Urine Volume in KKAy Mice,” Nippon Yakugaku Zasshi, Vol. 122, No. 2, 2002, pp. 163-168.
[7] S. Sakamoto, S. Takeshita, S. Sassa, S. Suzuki, Y. Ishikawa and H. Kudo, “Effects of Colestimide and/or Bofutsushosan on Plasma and Liver Lipids in Mice Fed a HighFat Diet,” In Vivo, Vol. 19, No. 6, 2005, pp. 1029-1033.
[8] T. Nakayama, S. Suzuki, H. Kudo, S. Sassa, M. Nomura and S. Sakamoto, “Effects of Three Chinese Herbal Medicines on Plasma and Liver Lipids in Mice Fed a High-Fat Diet,” Journal of Ethnopharmacology, Vol. 109, No. 2, 2007, pp. 236-240. doi:10.1016/j.jep.2006.07.041
[9] C. Hioki, K. Yoshimoto and T. Yoshida, “Efficacy of Bofutsushosan, an Oriental Herbal Medicine, in Obese Japanese Women with Impaired Glucose Tolerance,” Clinical and Experimental Pharmacology and Physiology, Vol. 31, No. 9, 2004, pp. 614-619. doi:10.1111/j.1440-1681.2004.04056.x
[10] J. Yamakawa, I. Yasuhito, T. Fumihide, T. Takahashi and J. Yoshida, “The Kampo Medicines Orengedokuto, Bofutsushosan and Boiogito Have Different Activities to Regulate Gene Expressions in Differentiated Rat White Adipocytes: Comprehensive Analysis of Genetic Profiles,” Biological & Pharmaceutical Bulletin, Vol. 31, No. 11, 2008, pp. 2083-2089. doi:10.1248/bpb.31.2083
[11] Q. Yu, M. Yasuda, T. Takahashi, M. Nomura, N. Hagino and S. Kobayashi, “Effects of Bofutsushosan and Gardeniae Frutus on Diabetic Serum Parameters in Streptozotocin-Induced Diabetic Mice,” Chinese Medicine, Vol. 2, No. 4, 2011, pp. 130-137. doi:10.4236/cm.2011.24022
[12] C. Rerup and F. Tarding, “Streptozotocin and AlloxanInduced Diabetes in Mice,” European Journal of Pharmacology, Vol. 7, No. 1, 1969, pp. 89-96. doi:10.1016/0014-2999(69)90169-1
[13] J. Movassat and B. Portha, “Beta-Cell Growth in the Neonatal Goto-Kakisaki Rat and Regeneration after Treatment with Streptozotocin at Birth,” Diabetologia, Vol. 42, No. 9, 1999, pp. 1098-1106. doi:10.1007/s001250051277
[14] M. S. Gokhale, D. H. Shah, Z. Hakim, D. D. Santani and R. K.Goyal, “Effect of Chronic Treatment with Amlodipine in Non-Insulin-Dependent Diabetic Rats,” Pharmacological Research, Vol. 37, No. 6, 1998, pp. 455-459. doi:10.1006/phrs.1998.0319
[15] N. Nakashima, I. Kimura and M. Kimura, “Isolation of Pseudoproto-Timosaponin AIII from Rhizomes of Anemarrhena Asphodeloides and Its Hypoglycemic Activity in Streptozotocin-Induced Diabetic Mice,” Journal of Natural Products, Vol. 56, No. 3, 1993, pp. 345-350. doi:10.1021/np50093a006
[16] T. Miura, H. Toyoda, M. Miyake, E. Ishihara, M. Usami and K. Tanigawa, “Hypoglycemic Action of Stigma of Zea mays L. in Normal and Diabetic Mice,” Natural Medicines, Vol. 50, No. 5, 1996, pp. 363-365.
[17] Y. Y. Liu, S. Kobayashi, T. Tsutsumi and H. Kontani, “Combined Effects of Stephania Radix and Astragali Radix in Antihyperglycemic Action of Boiogito (Fang-jihuang-qi-tang) in Streptozotocin-Induced Diabetic Mice,” Journal of Traditional Medicines, Vol. 17, No. 6, 2000, pp. 253-260.
[18] T. Tsutsumi, S. Kobayashi, Y. Y. Liu and H. Kontani, “Anti-Hyperglycemic Effect of Fangchinoline Isolated from Stephania tetrandra Radix in Streptozotocin-Diabetic Mice,” Biological & Pharmaceutical Bulletin, Vol. 26, No. 3, 2003, pp. 313-317. doi:10.1248/bpb.26.313
[19] A. Junod, A. E. Lambert, L. Orci, R. Pictet, A. E. Gonet and A. E. Renold, “Studies of the Diabetogenic Action of Streptozotocin,” Proceedings of the Society for Experimental Biology and Medicine, Vol. 126, No. 1, 1967, pp. 201-205.
[20] Y. Z. Zhang, L. M. Kuang, J. Zhou, M. Wang, H. Li and Q. Yi, “30 Case of Type Ⅱ Diabetic Treated with The Method of Dissipating Heat Detoxifying,” Guangming Journal of Chinese Medicine, vol. 23 No. 5, 2008, pp 632-634.
[21] M. Saito, T. Hamazaki, T. Tani and S. Watanabe, “Bofutsushosan, a Traditional Chinese Formulation, Inhibits Pancreatic Lipase Activity in Vitro and Suppresses the Elevation of Plasma Triacylglycerols after Oral Administration of Lipid Emulsion,” Journal of Traditional Medicines, Vol. 22, No. 3, 2005, pp. 308-313.
[22] L. K. Han, Y. N. Zheng, B. J. Xu, H. Okuda and Y. Kimura, “Saponins from Platycodi Radix Ameliorate High Fat Diet-Induced Obesity in Mice,” The Journal of Nutrition, Vol. 132, No. 8, 2002, pp. 2241-2245.
[23] D. Y. Kwon, Y. S. Kim, S. Y. Ryu, Y. H. Choi, M. R. Cha, H. J. Yang and S. Park, “Platyconic Acid, a Saponin from Platycodi Radix, Improves Glucose Homeostasis by Enhancing Insulin Sensitivity in Vitro and in Vivo,” European Journal of Nutrition, Vol. 51, No. 5, 2011, pp. 529-540.
[24] K. Kojima, T. Shimade, Y. Nagareda, M. Watanabe, J. Ishizaki, Y. Sai, K. Miyamoto and M. Aburada, “Preventive Effect of Geniposide on Metabollic Disease Status in Spontaneously Obese Type 2 Diabetic Mice and Free Fatty Acid-Treated HepG2 Cells,” Biological & Pharmaceutical Bulletin, Vol. 34, No. 10, 2011, pp. 1613-1618. doi:10.1248/bpb.34.1613
[25] Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults, “Executive Summary of the 3rd Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III),” The Journal of the American Medical Association, Vol. 285, No. 19, 2001, pp. 2486-2497. doi:10.1001/jama.285.19.2486
[26] U. Bhandari, J. N. Sharma and R. Zafar, “The Protective Action of Ethanolic Ginger (Zingber Officinale) Extract in Cholesterol Fed Rabbits,” Journal of Ethnopharmacology, Vol. 61, No. 2, 1998, pp. 167-171. doi:10.1016/S0378-8741(98)00026-9
[27] D. Amin, S. K. Gustafson, J. M. Weinacht, S. A. Cornell, K. Neuenschwander, B. Kosmider, A. C. Scotese, J. R. Regan and M. H. Perrone, “RG 12561 (Dalvastatin): A Novel Synthetic Inhibitor of HMG-CoA Reductase and Cholesterol-Lowering Agent,” Pharmacology, Vol. 46, No. 1, 1993, pp. 13-22. doi:10.1159/000139024

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.