Study Bacteriocin Production and Optimization Using New Isolates of Lactobacillus spp. Isolated from Some Dairy Products under Different Culture Conditions

Abstract

Lactobacilli belong to the group of lactic acid bacteria (LAB), that have several distinguished abilities such as production of lactic acid, enzymes such as β-Galactosidase and natural antimicrobial substances called bacteriocins. Bacteriocin is a biopreservative agent potential of suppressing growth of some contaminant bacteria in food industry but its commercial availability is limited and costly. The study aimed to select isolates of Lactobacillus spp. potential for producing bacteriocins to suppress the growth of Escherichia coli ATCC 25922 and Bacillus subtilis NCIB3610, and to optimize the process of bacteriocin production. Results obtained in this study showed that L. acidophilus isolate CH1 was selected as the best candidate for bacteriocin among the four isolates that tested. The largest amounts of the bacteriocins were synthesized only in MRS medium was supplemented with K2HPO4 (1.0%), Tween 80 (1%), Beef extract (1%), glucose, cyctein and peptone extract (1%). The optimization of culture conditions for bacteriocin production areas showed that corn steep liquor medium was the best medium for all isolates against Bacillus subtilis while no effect was observed on Escherichia coli ATCC 25922 except when used MRS medium. The optimum conditions for bacteriocin production were pH 6.0, temperature 34?C with 4% Phenyl acetamide showing the greatest growth inhibition areas.

Share and Cite:

H. Mahrous, A. Mohamed, M. El-Mongy, A. El-Batal and H. Hamza, "Study Bacteriocin Production and Optimization Using New Isolates of Lactobacillus spp. Isolated from Some Dairy Products under Different Culture Conditions," Food and Nutrition Sciences, Vol. 4 No. 3, 2013, pp. 342-356. doi: 10.4236/fns.2013.43045.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. Leroy and L. De Vuyst, “Lactic Acid Bacteria as Functional Starter Cultures for the Food Fermentation Industry,” Trends in Food Science & Technology, Vol. 15, No. 2, 2004, pp. 67-78. doi:10.1016/j.tifs.2003.09.004
[2] M. A. Riley and J. E. Wertz, “Bacteriocins: Evolution, Ecology, and Application,” Annual Review of Microbiology, Vol. 56, No. 3, 2002, pp. 117-137. doi:10.1146/annurev.micro.56.012302.161024
[3] R. W. Jack, J. R. Tagg and B. Ray. “Bacteriocins of Gram-Positive Bacteria,” Microbiology Reviews, Vol. 59, No. 2, 1995, pp. 171-200.
[4] M. Papagianni, “Ribosomally Synthesized Peptides and Antimicrobial Properties: Biosynthesis, Structure, Function, and Applications,” Biotechnology Advances, Vol. 21, No. 6, 2003, pp. 465-499. doi:10.1016/S0734-9750(03)00077-6
[5] J. R. Tagg, A. S. Dajani and L. W. Wannamaker, “Bacteriocins of Gram-Positive Bacteria,” Bacteriological Reviews, Vol. 40, No. 3, 1976, pp. 722-756.
[6] P. D. Cotter, C. Hill and R. P. Ross, “Bacteriocins: Developing Innate Immunity for Food,” Nature Reviews: Microbiology, Vol. 3, No. 10, 2005, pp. 777-788. doi:10.1038/nrmicro1273
[7] J. J. Mortvedt, F. R. Cox, L. M. Shuman and R. M. Welch, “Micronutrients in Agriculture,” 2nd Edition, Soil Science Society of America, Madison, 1991.
[8] A. S. Karaoglu, A. Faruk, S. S. Kilic and A. O. Kilic, “Antimicrobial Activity and Characteristics of Bacteriocins Produced by Vaginal Lactobacilli,” Turkish Journal of Medical Sciences, Vol. 33, No. 1, 2003, pp. 7-13.
[9] S. Ennahar, K. Sonomoto and A. Ishizaki, “Class IIa Bacteriocins from Lactic Acid Bacteria: Antibacterial Activity and Food Preservation,” Journal of Bioscience and Bioengineering, Vol. 87, No. 6, 1999, pp. 705-716. doi:10.1016/S1389-1723(99)80142-X
[10] J. C. De Man, M. Rogosa and M. E. Sharpe, “A Medium for the Cultivation of Lactobacilli,” Journal of Applied Microbiology, Vol. 23, No. 1, 1960, pp. 130-135. doi:10.1111/j.1365-2672.1960.tb00188.x
[11] Bergey’s Manual of Systematic Bacteriology, “Online Version of Bergey’s Manual,” 2004. www.reference.com/motif/science/Online-Version-of-Berge
[12] O. Kandler and N. Weiss, “Regular, Nonsporing Gram-Positive Rods,” In: P. H. A. Sneath, N. S. Mair, M. E. Sharpe and J. G. Holt, Eds., Bergey’s Manual of Systematic Bacteriology, Williams and Williams, Baltimore, 1986, pp. 1208-1234.
[13] J. G. Holt, N. R. Krig, J. T. Staley and S. T. Williams, “Gram Positive Cocci. Bergey’z Manual of Determinative Bacteriolog,” 9th Edition, Springer, New York, Baltimore, 1994, pp. 528-540.
[14] G. M. Garrity, J. A. Bell and T. G. Lilbum, “Taxonomic Outline of The Prokaryotes Bergey’s Manual of Systematic Bacteriology,” 2nd Edition, Springer, New York, Berlin, Heidelberg, 2004.
[15] British Standards Institution (BSI), “Methods on Microbial Examination for Dairy Purposes,” British Standards Institution, British Standards House, London, 1968.
[16] J. N. Eloff, “A Sensitive and Quick Microplate Method to Determine the Minimal Inhibitory Concentration of Plant Extract for Bacteria,” Planta Medica, Vol. 64, No. 8, 1998, pp. 711-713. doi:10.1055/s-2006-957563
[17] M. Cole, “Formation of 6-Aminopenicillanic Acid, Penicillins and Penicillin Acylase by Various Fungi,” Applied Microbiology, Vol. 14, No. 1, 1966, pp. 98-104.
[18] M. Cole, “Hydrolysis of Penicillins and Related Compounds by the Cell-Bound Penicillin Acylase of Escherichia coli,” The Biochemical Journal, Vol. 115, No. 4, 1966, pp. 733-739.
[19] V. Bihari and K. Buchholz, “Kinetics & Effectiveness of Soluble & Immobilized Penicillin Acylase (E. coli) in Different Forms,” Indian Journal of Experimental Biology, Vol. 21, No. 1, 1983, pp. 27-30.
[20] U. Schillinger and F. K. Lücke, “Antibacterial Activity of Lactobacillus sake Isolated from Meat,” Applied and Environmental Microbiology, Vol. 55, No. 8, 1989, pp. 1091-1096.
[21] H. Daba, S. Pandian, J. F. Gosselin, R. E. Simard, J. Huang and C. Lacroix, “Detection and Activity of Bacteriocin Produced by Leuconostoc mesenteriodes,” Applied and Environmental Microbiology, Vol. 57, No. 12, 1991, pp. 3450-3455.
[22] S. T. Ogunbanwo, A. I. Sanni and A. A. Onilude, “Characterization of Bacteriocin Produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1,” African Journal of Biotechnology, Vol. 2, No. 8, 2003, pp. 219-227.
[23] P. M. Muriana and T. R. Klaenhammer, “Purification and Partial Characterization of Lactacin F, a Bacteriocin Produced by Lactobacillus acidophilus 11088,” Applied and Environmental Microbiology, Vol. 57, No. 1, 1991, pp. 114-121.
[24] K. Adinarayana and P. Ellaiah, “Response Surface Optimization of the Critical Medium Components for the Production of the Alkaline Protease by a Newly Isolated Bacillus sp.,” Journal Pharmacy & Pharmaceutical Sciences, Vol. 5, No. 3, 2003, pp. 272-278.
[25] W. F. Harigon and M. E. McCane, “Laboratory Methods in Foods and Dairy Microbiology,” In: W. F. Harigon and M. E. McCane, Eds., Laboratory Methods in Foods and Dairy Microbiology, Academic Press, New York, 1976, pp. 12-15.
[26] A. Galvez, R. L. Lopez, H. Abriouel, E. Valdivia and N. B. Omar, “Application of Bacteriocins in the Control of Food Borne Pathogenic and Spoilage Bacteria,” Critical Reviews in Biotechnology, Vol. 28, No. 2, 2008, pp. 125-152. doi:10.1080/07388550802107202
[27] S. H. Ko and C. Ahn, “Bacteriocin Production by Lactococcus lactis KCA2386 Isolated from White Kimchi,” Food Science and Biotechnology, Vol. 9, No. 4, 2000, pp. 263-269.
[28] A. R. Sarika, “Optimization Analysis of Free and Immobilized Bacteriocin Elaborated by Lactobacillus plantarum MTCC B 1746 and Lactococcus lactis MTCC B 440,” M.Sc. Dissertation, Manonmaniam Sundaranar University, Thirunelveli, 2003, p. 54.
[29] H. S. Chin, J. S. Shim, J. M. Kim, R. Yang and S. S. Yoon, “Detection and Antibacterial Activity of a Bacteriocin Produced by Lactobacillus plantarum,” Food Science and Biotechnology, Vol. 10, No. 2, 2001, pp. 335- 341.
[30] M. S. Juarez Tomas, E. Bru, B. Wiese, A. Pesce de Ruiz Holgado and M. E. Nader-Macias, “Influence of pH, Temperature and Culture Media on the Growth and Bacteriocin Production by Vaginal Lactobacillus salivarius CRL 1328,” Journal Applied Microbiology, Vol. 93, No. 4, 2002, pp. 714-724. doi:10.1046/j.1365-2672.2002.01753.x
[31] B. E. Terzaghi and W. E. Sandine, “Improved Medium for Lactic Streptococci and Their Bacteriophages,” Applied Microbiology, Vol. 29, No. 6, 1975, pp. 807-813.
[32] P. Raibaud, J. V. Galpin, R. Ducluzeau, G. Mocquot and G. Oliver, “The ‘Lactobacillus’ Genus in the Digestive Tract of Rats. II. Characteristics of Heterofermentative Strains Isolated from ‘Holo-’ and ‘Gnotoxenic’ Rats,” Annales de Microbiologie, Vol. 124, No. 2, 1973, pp. 223-235.
[33] S. R. Biswas, P. Ray, M. C. Johnson and B. Ray, “Influence of Growth Conditions on the Production of a Bacteriocin, Pediocin AcH by Pediococcus acidilactici H,” Applied and Environmental Microbiology, Vol. 57, No. 4, 1991, pp. 1265-1267.
[34] V. Karthikeyan and S. W. Santosh, “Isolation and Partial Characterization of Bacteriocin Produced from Lactobacillus plantarum,” African Journal of Microbiology Research, Vol. 3, No. 5, 2009, pp. 233-239.
[35] A. A. O. Ogunshe, M. O. Omotoso and A. D. V. Ayansina, “Microbial Studies and Biochemical Characteristics of Controlled Fermented Afiyo—A Nigerian Fermented Food Condiment from Prosopis africana (Guill and Perr.) Taub,” Pakistan Journal of Nutrition, Vol. 6, No. 6, 2007, pp. 620-627. doi:10.3923/pjn.2007.620.627
[36] O. Simsek, A. H. Con and S. Tulumoglu,“Isolating Lactic Starter Cultures with Antimicrobial Activity for Sourdough Processes,” Food Control, Vol. 17, No. 4, 2009, 263-270. doi:10.1016/j.foodcont.2004.10.011
[37] H. Fukushima, J. Kelstrup, S. Fukushima, T. Umemoto and H. Sagawa, “Isolation, Partial Purification and Preliminary Characterization of a Bacteriocin from Streptococcus mutants Rm-10,” Antonie van Leeuwenhoek, Vol. 49, No. 1, 1983, pp. 41-50. doi:10.1007/BF00457878
[38] M. C. Audisto, G. Oliver and M. C. Apella, “Effect of Different Complex Carbon Sources on Growth and Bacteriocin Synthesis of Enterococcus faecium,” Int. J. Food Microbiol., 2001, 63, 235-241. doi:10.1016/S0168-1605(00)00429-3
[39] R. Geisen, B. Becker and W. H. Holzapfel, “Modelling the Bacteriocin Production of Leuconostoc carnosum,” FEMS Microbiology Reviews, 1993, Vol. 12-S, pp. 337- 340.
[40] G. Vignolo, S. Fadda, M. N. DeKairuz, A. A. P. De Ruiz Holgdo and G. Olivier, “Control of Listeria monocytogenes in Ground Beef by B. E. Terzaghi and W. E. Sandine,” Applied Microbiology, Vol. 29, No. 60, 1975, p. 807.
[41] L. De Vugst and E. J. Vandamme, “Bacteriocins of Lactic Acid Bacteria, Microbiology, Genetic Application,” Blackie Academy and Professional, London, 1994.
[42] S. Saharan, N. Dilbaghi and S. Sharma, “Optimization of Medium Conditions for the Production of Bacteriocin-SN21 by Lactobacillus acidophilus,” Indian Journal of Microbiology, Vol. 38, No. 4, 1998, pp. 225-227.
[43] S. D. Todorov and L. M. T. Dicks, “Lactobacillus plantarum Isolated from Molasses Produces Bacteriocins Active against Gram-Negative Bacteria,” Enzyme and Microbial Technology, Vol. 36, No. 2-3, 2005, pp. 318-326. doi:10.1016/j.enzmictec.2004.09.009
[44] N. E. Pingitore Jr., J. W. Clague, M. A. Amaya, B. Maciejewska and J. J. Reynoso, “Urban Airborne Lead: X- Ray Absorption Spectroscopy Establishes Soil as Dominant Source,” PLoS ONE, Vol. 4, No. 4, 2009, Article ID; e5019. doi:10.1371/journal.pone.0005019
[45] A. O. A. Ogunshe1, M. Z. Johnny and A. O. Arinze, “Effects of Food Spices on Gram-Negative Food Indicator Bacteria from Some Nigerian Ethnic Fermented Plant Food Condiments,” African Journal of Plant Science, Vol. 6, No. 1, 2012, pp. 8-14.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.