Sol-gel bioceramic material from bentonite clay

DOI: 10.4236/jbise.2013.63032   PDF   HTML   XML   4,245 Downloads   6,565 Views   Citations


Bioceramic material of the quaternary system; SiO2- CaO-Na2O-P2O5 that has composition similar to Bio- glass? 45S5 was prepared by the sol-gel method from locally obtained bentonite clay (BTC). The monolith obtained was sintered at 1000?C for 2 h to facilitate densification and phase transformation. X-ray diffraction (XRD) analysis revealed the presence of sodium calcium silicate, Na2Ca2Si3O9 as major crystal phase, and another secondary orthorhombic phase, NaCaPO4. Fourier transform infrared (FTIR) spectroscopic investigation confirmed the presence of Si-O-Si bonds and a crystalline phosphate in the glass network. Scanning electron microscopy (SEM) revealed a network of micropores and interconnected macropores. Overall, the material displays features amenable for possible utilization in tissue engineering scaffolds.

Share and Cite:

Essien, E. , Adams, L. , Shaibu, R. and Oki, A. (2013) Sol-gel bioceramic material from bentonite clay. Journal of Biomedical Science and Engineering, 6, 258-264. doi: 10.4236/jbise.2013.63032.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Hench, L.L. (1998) Bioceramics. Journal of American Ceramic Society, 81, 1705-1728. doi:10.1111/j.1151-2916.1998.tb02540.x
[2] Hench, L.L. and Polak, J.M. (2002) Third-generation biomedical materials. Science, 295, 1014-1017. doi:10.1126/science.1067404
[3] Williams, D. (2004) Benefit and risk of tissue engineering. Materials Today, 7, 24-29. doi:10.1016/S1369-7021(04)00232-9
[4] Oliveira, J.M., Silva, S.S., Malafaya, P.B., Rodrigues, M.T., Kotobuki, N., Hirose, M., Gomes, M.E., Mano, J.F., Ohgushi, H. and Reis, R.L. (2009) Macroporous hydro-xyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical Materials Research Part A, 91A, 175-186. doi:10.1002/jbm.a.32213
[5] Hutmacher, D.W., Schantz, J.T., Lam, C.X.F., Tan, K.C and Lim, T.C. (2007). State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Journal of Tissue Engineering and Regenerative Medicine, 1, 245-260. doi:10.1002/term.24
[6] Hassna, R.R.R. and Zhang, M. (2004) Biphasic calcium phosphate nanocomposite porous scaffolds for load-bear- ing bone tissue engineering. Biomaterials, 25, 5171-5180. doi:10.1016/j.biomaterials.2003.12.023
[7] Hench, L.L. (2006) The story of Bioglass?. Journal Material Science: Materials in Medicine, 17, 967-978. doi:10.1007/s10856-006-0432-z
[8] Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L. and Polak, J.M. (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. Journal of Biomedical Materials Research A, 55, 151-157. doi:10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D
[9] Hench, L.L., Splinter, R.J., Allen, W.C. and Greenlee Jr., T.K. (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 2, 117-141. doi:10.1002/jbm.820050611
[10] Jones, J.R. (2009) New trends in bioactive scaffolds: The importance of nanostructure. Journal of European Cera- mic Society, 29, 1275-1281. doi:10.1016/j.jeurceramsoc.2008.08.003
[11] Hench, L.L. (1991) Bioceramics: From concept to clinic. Journal of American Ceramic Society, 74, 1487-510. doi:10.1111/j.1151-2916.1991.tb07132.x
[12] Jones, J.R., Ehrenfried, L.M. and Hench, L.L. (2006) Op- timising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 27, 964-973. doi:10.1016/j.biomaterials.2005.07.017
[13] Pereira, M.M., Jones, J.R., Orefice, R.L. and Hench, L.L. (2005) Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method. Journal of Materials Science: Materials in Medicine, 16, 1045-1050. doi:10.1007/s10856-005-4758-8
[14] Chen, Q.-Z., Thompson, I.D. and Boccaccini, A.R. (2006) 45S5 Bioglass?-derived glass-ceramic scaffold for bone tissue engineering. Biomaterials, 27, 2414-2425. doi:10.1016/j.biomaterials.2005.11.025
[15] Chen, Q.-Z., Li, Y., Jin, L., Quinn, J.M.W. and Komesaroff, P.A. (2010) A new sol-gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomaterialia, 6, 4143-4153. doi:10.1016/j.actbio.2010.04.022
[16] Peitl, O., Zanotto, E.D. and Hench, L.L. (2001) Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. Journal of Non-Crystalline Solids, 292, 115-126. doi:10.1016/S0022-3093(01)00822-5
[17] Li, Z., Hou, B., Xu, Y., Wu, D., Sun, Y., Hu, W., Deng, W. and Deng, F. (2005). Comparative study of sol-gel-hydrothermal and sol-gel synthesis of titaniasilica composite nanoparticles. Journal Solid State Chemistry, 178, 1395-1405. doi:10.1016/j.jssc.2004.12.034
[18] Pabon, E., Retuert, J., Quijada, R. and Zarate, A. (2004) TiO2-SiO2 mixed oxides prepared by a combined sol-gel and polymer inclusion method. Microporous and Meso-porous Materials, 67, 195-203. doi:10.1016/j.micromeso.2003.10.017
[19] Crisan, M., Raileanu, M., Preda, S., Zaharescu, M., Valean, A.M., Popovici, E.J., Teodorescu, V.S., Matejec, V. and Mrazek, J. (2006) Manganese doped sol-gel materials with catalytic properties. Journal of Optoelectronics and Advanced Materials, 8, 815-819.
[20] Hench, L.L., (1997) Theory of bioactivity: The potential for skeletal regeneration. Anales de Quimica, 93, 44-48.
[21] Nayak, J.P., Kamar, S. and Bera, J. (2010) Sol-gel synthesis of bioglass-ceramics using rice husk ash as a source for silica and its characterization. Journal of Non-Crystalline Solids, 356, 1447-1451. doi:10.1016/j.jnoncrysol.2010.04.041
[22] Wu, S.C., Hsu, H.C., Hsiao, S.H. and Ho, W.F. (2009) Preparation of porous 45S5 Bioglass-derived glass-ceramic scaffolds by using rice husk as a porogen additive. Journal of Materials Science: Materials in Medicine, 20, 1229-1236. doi:10.1007/s10856-009-3690-8
[23] Casado, C.E., Prado, M.O. and Zanotto, E.D. (2001) Nano- porosity in sintered silica powders from rice hull ash. II Simpósio Brasilereiro de Estruturologia, Tiradentes, 27-29 September 2001, 89-89.
[24] Sposito, G., Skipper, N.T., Sutton, R., Park, S-h., Soper, A.K. and Greathouse, J.A. (1999) Surface geochemistry of the clay minerals. Proceedings of the National Academy of Sciences of the United States of America, Califonia, 8-9 November 1998, 3358-3364.
[25] Moore, D.M. and Reynolds, R.C. (1997) X-ray diffraction and identification and analysis of clay minerals. 2nd Edition, Oxford University Press, New York.
[26] Essien, E.R., Olaniyi, O.A., Adams, L.A. and Shaibu, R.O. (2012) Sol-gel-derived porous silica: Economic synthesis and characterization. Journal of Minerals and Materials Characterization and Engineering, 11, 976-981.
[27] Karageorgiou, V. and Kaplan, D. (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26, 5474-5491. doi:10.1016/j.biomaterials.2005.02.002
[28] Lee, C.J., Kim, G.S. and Hyun, S.H. (2002) Synthesis of silica aerogels from waterglass via new modified ambient drying. Journal of Materials Science, 37, 2237-2241. doi:10.1023/A:1015309014546
[29] Ochoa, I., Sanz-Herrera, J.A., Garcia-Aznar, J.M., Do- blaré, M., Yunos, D.M. and Boccaccini, A.R. (2009) Permeability evaluation of 45S5 Bioglass?-based scaffolds for bone tissue engineering. Journal of Biomechanics, 42, 257-260. doi:10.1016/j.jbiomech.2008.10.030
[30] Lenza, R.F.S. and Vasconcelos, W.L. (2001) Preparation of silica by sol-gel method using formamide. Materials Research, 4, 189-194. doi:10.1590/S1516-14392001000300008
[31] Carta, D., Knowles, J.C., Smith, M.E. and Newport, R.J. (2007) Synthesis and structural characterization of P2O5- CaO-Na2O sol-gel materials. Journal of Non-Crystalline Solids, 353, 1141-1149. doi:10.1016/j.jnoncrysol.2006.12.093
[32] Qian, J., Kang, Y., Wei, Z. and Zhang, W. (2009) Fabri-cation and characterization of biomorphic 45S5 bioglass scaffold from sugarcane. Material Science and Engineering C, 29, 1361-1364.
[33] Chen, Q.Z., Rezewan, K., Fran?on, V., Armitage, D., Nazhat, S.N., Jones, S.H. and Boccaccini, A.R. (2007) Surface functionalization of Bioglass?-derived porous scaffolds. Acta Biomaterialia, 3, 551-562. doi:10.1016/j.actbio.2007.01.008
[34] Clupper, D.C., Mecholsky, J.J., LaTorre, G.P. and Green-span, D.C. (2002) Bioactivity of tape cast and sintered bioactive glass-ceramic in simulated body fluid. Biomaterials, 23, 2599-2606. doi:10.1016/S0142-9612(01)00398-2

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.