Effect of BDNF and Adipose Derived Stem Cells Transplantation on Cognitive Deficit in Alzheimer Model of Rats

Abstract

In this study, the potential for recovery mediated by co-treatment of brain-derived neurotrophic factor (BDNF) and adipose tissue derived stem cells (ASCs) on functional recovery after Ibotenic acid (Ibo) lesion of the nucleus basalis magnocellularis (NBM) was examined. Ibotenic acid was injected bilaterally into the NBM of experimental rats, then the animals received treatments as follows: ASCs (500 × 103), BDNF (5 ug/ul) and a combination of BDNF and ASCs. Two months after the treatment, cognitive recovery was assessed by the Morris water-maze. These results showed that ASCs transplantation may have therapeutic value in disease and conditions that result in memory loss, and co-treatment with BDNF doesn’t offer more efficacious cognitive function.

Share and Cite:

P. Babaei and B. Tehrani, "Effect of BDNF and Adipose Derived Stem Cells Transplantation on Cognitive Deficit in Alzheimer Model of Rats," Journal of Behavioral and Brain Science, Vol. 3 No. 1, 2013, pp. 156-161. doi: 10.4236/jbbs.2013.31015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Geula, N. Nagykery, A. Nicholas and C. K. Wu, “Cholinergic Neuronal and Axonal Abnormalities Are Present Early in Aging and in Alzheimer Disease,” Journal of Neuropathology & Experimental Neurology, Vol. 67, No. 4, 2008, pp. 309-318. doi:10.1097/NEN.0b013e31816a1df3
[2] A. Swarowsky, L. Rodrigues, R. Biasibetti, M. C. Leite, L. F. de Oliveira, L. M. de Almeida, C. Gottfried, J. A. Quillfeldt, M. Achaval and C. A. Goncalves, “Glial Alterations in the Hippocampus of Rats Submitted to Ibotenic-Induced Lesion of the Nucleus Basalis Magnocellularis,” Behavioural Brain Research, Vol. 190, No. 2, 2008, pp. 206-211. doi:10.1016/j.bbr.2008.02.039
[3] K. L. Davis, R. C. Mohs, D. Marin, D. P. Purohit, D. P. Perl, M. Lantz, G. Austin and V. Haroutunian, “Cholinergic Markers in Elderly Patients with Early Signs of Alz-heimer Disease,” Journal of the American Medical Association, Vol. 281, No. 15, 1999, pp. 1401-1406. doi:10.1001/jama.281.15.1401
[4] P. Babaei, B. Soltani Te-hrani and A. Alizadeh, “Transplanted Bone Marrow Mesen-chymal Stem Cells Improve Memory in Rat Models of Alzhei-mer’s Disease,” Stem Cells International, Vol. 2012, 2012, pp. 1-8. doi:10.1155/2012/369417
[5] M. J. Lopez and N. D. Spencer, “In Vitro Adult Rat Adipose Tissue-Derived Stromal Cell Isolation and Differentiation,” Methods in Molecular Biology, Vol. 702, 2011, pp. 37-46. doi:10.1007/978-1-61737-960-4_4
[6] S. K. Kang, D. H. Lee, Y. C. Bae, H. K. Kim, S. Y. Baik and J. S. Jung, “Improvement of Neurological Deficits by Intracerebral Transplantation of Human Adipose Tissue-Derived Stromal Cells after Cerebral Ischemia in Rats,” Experimental Neurology, Vol. 183, No. 2, 2003, pp. 355- 366. doi:10.1016/S0014-4886(03)00089-X
[7] M. K. McCoy, T. N. Martinez, K. A. Ruhn, P. C. Wrage, E. W. Keefer and M. G. Tansey, “Autologous Transplants of Adipose-Derived Adult Stromal (ADAS) Cells Afford Dopaminergic Neuroprotection in a Model of Parkinson’s Disease,” Experimental Neurology, Vol. 210, No. l, 2008, pp. 14-29. doi:10.1016/j.expneurol.2007.10.011
[8] P. Taupin and F. H. Gage, “Adult Neurogenesis and Neural Stem Cells of the Central Nervous System in Mammals,” Journal of Neuros-cience Research, Vol. 69, No. 6, 2002, pp. 745-749. doi:10.1002/jnr.10378
[9] C. M. Morshead and D. Vander-kooy, “Postmitotic Death Is the Fate of Constitutively Prolife-rating Cells in the Subependymal Layer of the Adult-Mouse Brain,” The Journal of Neuroscience, Vol. 12, No. 1, 1992, pp. 249- 256.
[10] V. Pencea, K. D. Bingaman, S. J. Wiegand and M. B. Luskin, “Infusion of Brain-Derived Neurotrophic Factor into the Lateral Ventricle of the Adult Rat Leads to New Neurons in the Parenchyma of the Striatum, Septum, Thalamus, and Hypothalamus,” The Journal of Neuro-science, Vol. 21, No. 17, 2001, pp. 6706-6717.
[11] V. Ourednik, J. Ourednik, Y. Xu, Y. Zhang, W. P. Lynch, E. Y. Snyder and M. Schachner, “Cross-Talk between Stem Cells and the Dysfunctional Brain Is Facilitated by Manipulating the Niche: Evidence from an Ad-hesion Molecule,” Stem Cells, Vol. 27, No. 11, 2009, pp. 2846-2856. doi:10.1002/stem.227
[12] T. Suzuki, S. Ooto, T. Akagi, K. Amemiya, Y. Igarashi, R. Mizushima and M. Takahashi, “Effects of Prolonged Delivery of Brain-Derived Neurotrophic Factor on the Fate of Neural Stem Cells Transplanted into the Developing Rat Retina,” Biochemical and Biophysical Research Communications, Vol. 309, No. 4, 2003, pp. 843-847. doi:10.1016/j.bbrc.2003.08.076
[13] A. G. Xuan, D. H. Long, H. G. Gu, D. D. Yang, L. P. Hong and S. L. Leng, “BDNF Improves the Effects of Neural Stem Cells on the Rat Model of Alzheimer’s Disease with Unilateral Lesion of Fim-bria-Fornix,” Neuro-science Letters, Vol. 440, No. 3, 2008, pp. 331-335. doi:10.1016/j.neulet.2008.05.107
[14] G. Paxinos and C.Watson, “The Rat Brain in Stereotaxic Coordinates,” 6th Edition, Elsevier, Amsterdam, 2007. http://www.pricestube.com/export/9780123741219.pdf
[15] R. Morris, “Developments of a Water-Maze Procedure for Studying Spatial Learning in the Rat,” Journal of Neuroscience Methods, Vol. 11, No. 1, 1984, pp. 47-60. doi:10.1016/0165-0270(84)90007-4
[16] M. Mizuno, K. Yamada, A. Olariu, H. Nawa and T. Nabeshima, “Involvement of Brain-Derived Neurotrophic Factor in Spatial Memory Formation and Maintenance in a Radial Arm Maze Test in Rats,” The Journal of Neuro-science, Vol. 20, No. 18, 2000, pp. 7116-7121.
[17] H. J. Lee, J. K. Lee, H. Lee, J. W. Shin, J. E. Carter, T. Sakamoto, H. K. Jin and J. S. Bae, “The Therapeutic Potential of Human Umbilical Cord Blood-Derived Mesen- chymal Stem Cells in Alzheimer’s Disease,” Neuroscience Letters, Vol. 481, No. 1, 2010, pp. 30-35. doi:10.1016/j.neulet.2010.06.045
[18] X. Chen, M. Katakowski, Y. Li, D. Lu, L. Wang, L. Zhang, J. Chen, Y. Xu, S. M. Gautam and M. Chopp, “Human Bone Marrow Stromal Cell Cultures Conditioned by Traumatic Brain Tissue Extracts: Growth Factor Production,” Journal of Neuroscience Research, Vol. 69, No. 5, 2002, pp. 687-691. doi:10.1002/jnr.10334
[19] S. A. Heldt, L. Stanek, J. P. Chhatwal and K. J. Ressler, “Hip-pocampus-Specific Deletion of BDNF in Adult Mice Impairs Spatial Memory and Extinction of Aversive Memories,” Mo-lecular Psychiatry, Vol. 12, No. 7, 2007, pp. 656-670. doi:10.1038/sj.mp.4001957
[20] L. Tapia-Arancibia, E. M. Aliaga and S. Silhol, “New Insights into Brain BDNF Function in Normal Aging and Alzheimer Disease,” Brain Research Reviews, Vol. 59, No. 1, 2008, pp. 201-220. doi:10.1016/j.brainresrev.2008.07.007
[21] B. Waldau, “Stem Cell Transplantation for Enhancement of Learning and Memory in Adult Neurocognitive Disorders,” Aging and Disease, Vol. 1, No. 1, 2010, pp. 60-71.
[22] M. B. Luskin, V. Pencea, K. D. Bingaman and S. J. Wie- gand, “Infusion of Brain-Derived Neurotrophic Factor into the Lateral Ventricle of the Adult Rat Leads to New Neurons in the Parenchyma of the Striatum, Septum, Thalamus, and Hypothalamus,” Journal of Neuros-cience, Vol. 21, No. 17, 2001, pp. 6706-6717.
[23] S. D. Ginsberg and L. J. Martin, “Axonal Transection in Adult Rat Brain Induces Transsynaptic Apoptosis and Persistent Atrophy of Target Neurons,” Journal of Neuro-trauma, Vol. 19, No. 1, 2002, pp. 99-109. doi:10.1089/089771502753460277
[24] M. Eijkenboom, A. Blokland, F. J. van der Staay, “Modelling Cognitive Dysfunctions with Bilateral Injections of Ibotenic Acid into the Rat Entorhinal Cortex,” Neuroscience, Vol. 101, No. 1, 2000, pp. 27-39. doi:10.1016/S0306-4522(00)00342-0
[25] H. Song, C. F. Stevens and F. H. Gage, “Astroglia Induce Neurogenesis from Adult Neural Stem Cells,” Nature, Vol. 417, No. 6884, 2002, pp. 39-44. doi:10.1038/417039a
[26] C. Cunha, A. Angelucci, A. D’Antoni, M. D. Dobrossy, S. B. Dunnett, N. Berardi and R. Brambilla, “Brain-Derived Neurotrophic Factor (BDNF) Over-expression in the Fore-brain Results in Learning and Memory Impairments,” Neurobiology of Disease, Vol. 33, No. 3, 2009, pp. 358-368. doi:10.1016/j.nbd.2008.11.004
[27] S. D. Croll, C. Suri, D. L. Compton, M. V. Simmons, G. D. Yancopoulos, R. M. Lindsay, S. J. Wiegand, J. S. Rudge and H. E. Scharfman, “Brain-Derived Neurotrophic Factor Transgenic Mice Exhibit Passive Avoidance Deficits, Increased Seizure Severity and in Vitro Hyper-excitability in the Hippocampus and Entorhinal Cortex,” Neuroscience, Vol. 93, No. 4, 1999, pp. 1491-1506. doi:10.1016/S0306-4522(99)00296-1
[28] U. Englund, A. Bjorklund, K. Wictorin, O. Lindvall and M. Kokaia, “Grafted Neural Stem Cells Develop into Functional Pyramidal Neurons and Integrate into Host Cortical Circuitry,” Proceedings of the National Academy of Sciences, Vol. 99, No. 26, 2002, pp. 17089-17094. doi:10.1073/pnas.252589099

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.