Adsorption of Nickel in Aqueous Solution onto Natural Maghnite

Abstract

Maghnite clay obtained from Tlemcen, Algeria was investigated to remove heavy metal ion from wastewater. Thus, the present study includes the adsorption of Ni(II) in aqueous solution on maghnite clay through the process of adsorption under various conditions (with variable concentration of metal ion, temperature, pH and mixing time). Increasing pH favours the removal of metal ions till they are precipitated as the insoluble hydroxides. The uptake is rapid with maximum adsorption being observed within 10 min for Ni(II). In addition, the results obtained from adsorption isotherm indicated that these data can be better fitted with the Langmuir and Freundlich equations than the Dubinin-Radushke- vich (D-R) equation.

Share and Cite:

M. Zenasni, S. Benfarhi, A. Merlin, S. Molina, B. George and B. Meroufel, "Adsorption of Nickel in Aqueous Solution onto Natural Maghnite," Materials Sciences and Applications, Vol. 4 No. 2, 2013, pp. 153-161. doi: 10.4236/msa.2013.42018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Parab, S. Joshi, N. Shenoy, A. Lali, U. S. Sarma and M. Sudersanan, “Determination of Kinetic and Equili brium of Co(II), Cr(III), and Ni(II) onto Coir Pith,” Process Biochemistry, Vol. 41, No. 3, 2006, pp. 609-615. doi:10.1016/j.procbio.2005.08.006
[2] B. Rosborg and L. Werme, “The Swedish Nuclear Waste Program and the Long-Term Corrosion Behavior of Copper,” Journal of Nuclear Materials, Vol. 379, No. 1-3, 2008, pp. 142-153. doi:10.1016/j.jnucmat.2008.06.025
[3] D. Cui and T. E. Eriksen, “Reduction of Tc(VII) and Np(V) in Solution by Ferrous Ion. A Laboratory Study of Homogeneous and Heterogeneous Redox Processes,” SKB Technical Report, 1996.
[4] F. El Aamrani, I. Casas, J. Pablo, L. Duro, M. Grive and J. Bruno, “Experimental and Modeling Study of the Inte raction between Uranium (VI) and Magnetite,” SKB Technical Report, 1999.
[5] M. A. Glaus, B. Baeyens, M. Lauber, T. Rabung and L. R. Van Loon, “Water-Extractable Organic Matter from Opa linus Clay: Effect on Sorption and Speciation of Ni(II), Eu(III) and Th(IV),” Nagra Technical Report, 2001, pp. 1-7.
[6] N. Marmier, A. Delisee and F. Fromage, “Surface Com plexation Modeling of Yb(III), Ni(II), and Cs(I) Sorption on Magnetite,”Journal of Colloid and Interface Science, Vol. 211, No. 1, 1999, pp. 54-60. doi:10.1006/jcis.1998.5968
[7] A. Gustafsson, M. Molera and I. Puigdomenech, “Study of Ni(II) Sorption on Chlorite a Fracture Filling Mineral in Granites, in: Scientific Basis for Nuclear Waste Mana gement XXVIII,” Materials Research Society Symposium Proceedings, Vol. 824, 2004, pp. 373-378.
[8] S. Holgersson, “Oskarshamn Site Investigation. Batch Experiments of I, Cs, Sr, Ni, Eu, U and Np Sorption onto Soil from the Laxemar Area,” SKB., 2009, pp. 9-29
[9] R. E. Grim, “Clay Mineralogy,” Second Edition, McGraw Hill Book Co., New York, 1968.
[10] H. H. Murray, “Traditional and New Application for Kaolin, Smectite, and Palygorskite: A General Over view,” Applied Clay Science, Vol. 17, No. 5-6, 2000, pp. 207-221. doi:10.1016/S0169-1317(00)00016-8
[11] H. Y. Jo, C. H. Benson and T. B. Edil, “Rate-Limited Cation Exchange in Thin Bentonitic Barrier Layers,” Canadian Geotechnical Journal, Vol. 43, No. 4, 2006, pp. 370-391. doi:10.1139/t06-014
[12] J. Sampler, L. Zheng, L. Montenegre, A. M. Fernandez and P. Rivas, “Coupled Thermo-Hydro-Chemical Models of Compacted Bentonite after FEBEX in Situ Test,” Applied Geochemistry, Vol. 23, No. 5, 2008, pp. 1186 1201. doi:10.1016/j.apgeochem.2007.11.010
[13] A. Harrane, M. A. Belaouedj and M. Belbachir, “Cationic Ring-Opening Polymerization of (d,l-Lactide) Using Maghnite-H+, a Non-Toxic Catalyst,” Reactive and Func tional Polymers, Vol. 71, No. 2, 2011, pp. 126-130. doi:10.1016/j.reactfunctpolym.2010.11.022
[14] C. E. Weaver and L. D. Pollard, “The Chemistry of Clay Minerals,”Elsevier Science Publishing Company, Oxford, 1975, p. 212.
[15] S. S. Guptaa and K. G. Bhattacharyya, “Immobilization of Pb(II), Cd(II) and Ni(II) Ions on Kaolinite and Mont morillonite Surfaces from Aqueous Medium,” Journal of Environmental Management, Vol. 87, No. 1, 2008, pp. 46-58. doi:10.1016/j.jenvman.2007.01.048
[16] N. Sarier and E. Onder, “Organic Modification of Mont morillonite with Low Molecular Weight Polyethylene Glycols and Its Use in Polyurethane Nanocomposite Foams,” Thermochimica Acta, Vol. 510, No. 1-2, 2010, pp. 113-121. doi:10.1016/j.tca.2010.07.004
[17] N. Sarier, E. Onder and S. Ersoy, “The Modification of Na-Montmorillonite by Salts of Fatty Acids: An Easy Intercalation Process,” Colloids and Surfaces A: Phy sicochemical and Engineering Aspects, Vol. 371, No. 1-3, 2010, pp. 40-49. doi:10.1016/j.colsurfa.2010.08.061
[18] J. D. Desai, H. M. Pathan, S. K. Min, K. D. Jung and O. S. Joo, “FT-IR, XPS and PEC Characterization of Spray Deposited Hematite Thin Films,” Applied Surface Science, Vol. 252, No. 5, 2005, pp. 1870-1875. doi:10.1016/j.apsusc.2005.03.135
[19] A. Leszczynska, J. Njuguna, K. Pielichowski and J. R. Banerjee, “Polymer/Montmorillonite Nanocomposites with Improved Thermal Properties Part II. Thermal Stability of Montmorillonite Nanocomposites Based on Different Polymeric Matrixes,” Thermochimica Acta, Vol. 454, No. 1, 2007, pp. 1-22.
[20] O. Abollino, M. Aceto, M. Malandrino, C. Sarzanini and E. Mentasti, “Adsorption of Heavy Metals on Na-Mont morillonite. Effect of pH and Organic Substances,” Water Research, Vol. 37, No. 7, 2003, pp. 1619-1627. doi:10.1016/S0043-1354(02)00524-9
[21] S. S. Gupta and K. G. Bhattacharyya, “Immobilization of Pb(II), Cd(II) and Ni(II) Ions on Kaolinite and Mont morillonite Surfaces from Aqueous Medium,” Journal of Environmental Management, Vol. 87, No. 1, 2008, pp. 46-58. doi:10.1016/j.jenvman.2007.01.048
[22] Q. H. Fan, D. D. Shao, J. Hu, W. S. Wu and X. K. Wang, “Comparison of Ni2+ Sorption to Bare and ACT-Graft Attapulgites: Effect of pH, Temperature and Foreign Ions,” Surface Science, Vol. 602, No. 3, 2008, pp. 778 785. doi:10.1016/j.susc.2007.12.007
[23] X. K. Wang, C. L. Chen, W. P. Hu, A. P. Ding, D. Xu and X. Zhou, “Sorption of 243Am(III) to Multiwall Car bon Nanotubes,” Environmental Science & Technology, Vol. 39, No. 8, 2005, pp. 2856-2860. doi:10.1021/es048287d
[24] S.-C. Tsai, S. Ouyang and C.-N. Hsu, “Sorption and Dif fusion Behavior of Cs and Sr on Jih-Hsing Bentonite,” Applied Radiation and Isotopes, Vol. 54, No. 2, 2001, pp. 209-215. doi:10.1016/S0969-8043(00)00292-X
[25] K. G. Bhattacharyya and S. S. Gupta, “Kaolinite and Montmorillonite as Adsorbents for Fe(III), Co(II) and Ni(II) in Aqueous Medium,” Applied Clay Science, Vol. 41, No. 1-2, 2008, pp. 1-9. doi:10.1016/j.clay.2007.09.005
[26] I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum,” Journal of American So ciety, Vol. 40, No. 9, 1918, pp. 1361-1403. doi:10.1021/ja02242a004
[27] M. I. Kandah and J.-L. Meunier, “Removal of Nickel Ions from Water by Multi-Walled Carbon Nanotubes,” Journal of Hazardous Materials, Vol. 146, No. 1-2, 2007, pp. 283-288. doi:10.1016/j.jhazmat.2006.12.019
[28] H. Freundlich, “über die Adsorption in L?sungen,” Zeit schrift für Physikalische Chemie (Leipzig), Vol. 57, 1906, pp. 385-470.
[29] R. Al Dwairi and A. Al-Rawajfeh, “Removal of Cobalt and Nickel from Wastewater by Using Jordan Low-Cost Zeolite and Bentonite,” Journal of the University of Che mical Technology and Metallurgy, Vol. 41, No. 1, 2012, pp. 69-76.
[30] D. Xu, X. L. Tan, C. L. Chen and X. K. Wang, “Adsor ption of Pb(II) from Aqueous Solution to MX-80 Ben tonite: Effect of pH, Ionic Strength, Foreign Ions and Temperature,” Applied Clay Science, Vol. 41, No. 1-2, 2008, pp. 37-46. doi:10.1016/j.clay.2007.09.004
[31] E. Eren, “Removal of Copper Ions by Modified Unye Clay, Turkey,” Journal of Hazardous Materials, Vol. 159, No. 2-3, 2008, pp. 235-244. doi:10.1016/j.jhazmat.2008.02.035

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.