Common Fixed Point Theorems of Multi-Valued Maps in Ultra Metric Space

DOI: 10.4236/am.2013.42062   PDF   HTML   XML   4,030 Downloads   6,710 Views   Citations

Abstract

We establish some results on coincidence and common fixed point for a two pair of multi-valued and single-valued maps in ultra metric spaces.

Share and Cite:

Q. Wang and M. Song, "Common Fixed Point Theorems of Multi-Valued Maps in Ultra Metric Space," Applied Mathematics, Vol. 4 No. 2, 2013, pp. 417-420. doi: 10.4236/am.2013.42062.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. C. M. van Roovij, “Non Archimedean Functional Analysis,” Marcel Dekker, New York, 1978.
[2] C. Petalas and F. Vidalis, “A Fixed Point Theorem in Non-Archimedaen Vector Spaces,” Proceedings of the American Mathematics Society, Vol. 118, 1993, pp. 819-821. doi:10.1090/S0002-9939-1993-1132421-2
[3] L. Gajic, “On Ultra Metric Spaces,” Novi Sad Journal of Mathematics, Vol. 31, No. 2, 2001, pp. 69-71.
[4] K. P. R. Rao, G. N. V. Kishore and T. Ranga Rao, “Some Coincidence Point Theorems in Ultra Metric Spaces,” International Journal of Mathematical Analysis, Vol. 1, No. 18, 2007, pp. 897-902.
[5] J. Kubiaczyk and A. N. Mostafa, “A Multi-Valued Fixed Point Theorem in Non-Archimedean Vector Spaces,” Novi Sad Journal of Mathematics, Vol. 26, No. 2, 1996, pp. 111-116.
[6] L. Gajic, “A Multivalued Fixed Point Theorem in Ultra Metric Spaces,” Matematicki Vesnik, Vol. 54, No. 3-4, 2002, pp. 89-91.
[7] K. P. R. Rao and G. N. V. Kishore, “Common Fixed Point Theorems in Ultra Metric Spaces,” Journal of Mathematics, Vol. 40, 2008, pp. 31-35.
[8] B. Damjanovic, B. Samet and C. Vetro, “Common Fixed Point Theorem for Multi-Valued Maps,” Acta Mathematica Scientia, Vol. 32, No. 2, 2012, pp. 818-824. doi:10.1016/S0252-9602(12)60063-0

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.