Relative importance of different physical processes on upper crustal specific heat flow in the Eifel-Maas region, Central Europe and ramifications for the production of geothermal energy


We study the recent upper crustal heat flow variations caused by long-term physical processes such as paleoclimate, erosion, sedimentation and mantle plume upwelling. As specific heat flow is a common lower boundary condition in many models of heat en fluid flow in the Earth’s crust we quantify its long-term transient variation caused by paleoclimate, erosion or sedimentation, mantle plume upwelling and deep groundwater flow. The studied area extends between the Eifel mountains and the Maas river inCentral Europe. The total variation due to these processes in our study area amounts to tectonic events manifested in the studied area 20 mW/m2, about 30% of the present day specific heat flow in the region.

Share and Cite:

Dijkshoorn, L. and Clauser, C. (2013) Relative importance of different physical processes on upper crustal specific heat flow in the Eifel-Maas region, Central Europe and ramifications for the production of geothermal energy. Natural Science, 5, 268-281. doi: 10.4236/ns.2013.52A039.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ziegler, P. and De’zes, P. (2005) Crustal evolution of western and central Europe. Memoir of the Geological Society, London.
[2] Walter, R. (2007) Geologie von mitteleuropa. Verslagbuchhandlung, Stuttgart.
[3] Van Tongeren, P. (2005) De vlaamse voerstreek: een geologische analyse van het laat palaezoicum van deze regio en het direct aangrenzend gebied. Tech/Rep.
[4] Dewaele, S. and Muchez, P. (2004) Alteration, mineralisation and fluid flow. Geologica Belgica, 7, 55-69.
[5] Bless, M. and Bouckaert, J. (1988) Suggestions for a deep seismic investigation north of the variscan mobile belt in the se netherlands. Annales de la Societe geologique de Belgique, 111, 229-241.
[6] Hollmann, E. (1997) Der variszische vorlandsu¨berschiebungsgu¨rtel der Ostbelgischen Ardennen. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany.
[7] Bless, M., Boukaert, J., and Paproth, E. (1980) Environmental aspects of some pre-Permian deposits in NW Europe. Mededelingen Rijks Geologische Dienst, 32-1, 3-13.
[8] Van Adrichem Boogaert, H. (1999) Toelichting bij kaartblad XV sittard maastricht. NITG-TNO Geological Survey, Utrecht.
[9] Arnold, J.W.S.H., J. and Schott, B. (2001) Continental collision and the dynamic and thermal evolution of the variscan orogenic crustal root—Numerical models. Journal of Geodynamics, 31, 273-291. doi:10.1016/S0264-3707(00)00023-5
[10] Von Winterfeld, C. (1994) Variszische Deckentek-tonik und devonische Beckengeometrie der Nordeifel—Ein quantitatives Modell (Profilbilanzierung und Strainanalyse im Linksrhenischen Schiefergebirge). Ph.D. Thesis, RWTH-Aachen University, Aachen.
[11] Lu¨ Nenschloss, B., Bayer, U., and Muchez, P. (1997) Coalification anomalies induced by fluid flow at the variscan thrust front: a numerical model of the paleotemperature field. Geologie en Mijnbouw, 76, 271-275.
[12] Keyser, M., Ritter, J. and Jordan, M. (2002) 3D shearwave velocity structure of the Eifel plume, Germany. Earth and Planetary Science Letters, 203, 59-82. doi:10.1016/S0012-821X(02)00861-0
[13] Knapp, G., Gliese, J. and Hager, H. (1980) Geologische karte der nordlichen eifel 1:100000. Geologischen Landesamt Nordrhein-Westfalen, Krefeld.
[14] Bless, M., et al. (1980) Tiefenlage der Oberfla¨che des namurs. In: Mededelingen Rijks Geologische Dienst, 17- 32.
[15] Wrede, V. and Zeller, M. (1987) Geologische karte der aachener steinkohlenlagersta¨tte, dargestellt an der karbonoberflache 1:25000. Geologischen Landesamt Nordrhein-Westfalen, Krefeld.
[16] Bless, M., et al. (1980) Tiefenlage der oberfla¨chedes Pra¨- Perms. Mededelingen Rijks Geologische Dienst, 17-32.
[17] Sauvage, C., Vanneste, C., Bertola, C., Dubois, D., Laloux, M., Willame, V. and Engels, P. (2005) Carte ge’ologique de Wallonie; la Direction Ge’ne’rale des Ressources Naturelles et de l’Environnement—Ministe`re de la Region Wallonne, Belgique.
[18] Bosch, P., Kisters, P. and Felder, W. (1995) Geologische kaart van Zuid-Limburg en omgeving; Paleozocum 1: 50000 (geological map of Zuid-Limburg en surroundings). Rijks Geologische Dienst, Heerlen.
[19] Group, D. (1990) Results of deep-seismic reflection investigations in the rhenish massif. Tectonophysics, 173, 507-515.
[20] Group, D. (1991) Results of the dekorp 1 (belcorp-dekorp) deep seismic reflection studies in the western part of the rhenish massif. Geophysics Journal International, 106, 203-227.
[21] Leibecker, J. (2000) Elektromagnetische Arraymes-sungen im Rheinischen Schiefergebirge: Modelle der elektrischen Leitfahigkeit der Erdkruste und des oberen Mantels mit Verbindungen zum Eifelvulkanismus. Ph.D. Thesis, George-August-University Guttingen, G?ttingen.
[22] Ritter, J., Jordan, M., Christensen, U. and Achauer, U. (2001) A mantle plume below the Eifel volcanic fields, Germany. Earth Planet Science Letters, 186, 7-14. doi:10.1016/S0012-821X(01)00226-6
[23] Granet, M., Wilson, M., and Achauer, U. (1995) Imaging a mantle plume beneath the French Massif Central. Earth Planet Science Letters, 136, 281-296. doi:10.1016/0012-821X(95)00174-B
[24] Anonymous (1976) Bouguer anomaly of belgium and surroundings. Observatoire Royal de Belgique.
[25] Wilson, J. (1966) Did the Atlantic close and then re-open? Nature, 211, 676-681. doi:10.1038/211676a0
[26] Kusznir, N. and Karner, G. (2007) Continental lithospheric thinning and responce to upwelling divergent mantle flow: Application to the Woodlark, Newfound-land and Iberia margins. Geological Society of London, London.
[27] Barker, C. and Pawlewicz, M. (1986) The correlation of vitrinite reflectance with maximum temperature in humic organic matter. In: Buntebarth, G. and Stegena, L. Eds., Lecture Notes in Earth Sciences, Paleothermics, Springer-Verlag, Berlin, 79-93.
[28] Pommerening, J. (1992) Hydrogeologie, hydrogeochemie und genese der aachener thermalquellen. Ph.D. Thesis, Diss. RWTH Aachen University, Aachen.
[29] Truesdell, A. (1976) Summery of section iii: Geochemical techniques in exploration. Proceedings 2nd U.N. Symposium on the Development and Use of Geothermal Resources, U.S. Government Printing Office, Washington.
[30] Gupta, H. (1980) Geothermal resources: An energy alternative of Developments in economic geology. Elsevier Scientific Publishing Company.
[31] Driesen, J. (1963) Mijnwater oranje nassau mijnen. Geologische Dienst O. N. Mijnen.
[32] De’zes, P., Schmid, S. and Ziegler, P. (2004) Evolution of the European Cenozoic rift system: Interaction of the alpine and pyrenean orogens with their foreland lithosphere. Tectonophysics, 389, 1-33. doi:10.1016/j.tecto.2004.06.011
[33] Verkeyn, M. (1995) Bepaling van de Warme-stroomdichtheid in Belgie¨-een verkenning naar de mogelijkheden en de beperkingen (Detemination of the Specific Heat Flow in Belgium with possibilties and limitations). Master’s Thesis, Kath.University Leuven Belgium, Leuven.
[34] Rybach, L. (1979) The relationship between seismic velocity and radioactive heat production in crustal rocks; an exponential law. Pure and Applied Geophysics, 117, 75- 82. doi:10.1007/BF00879735
[35] Carslaw, H. and Jeager, J. (1946) Conduction of heat in solids. Oxford University Press, Oxford.
[36] Turcotte, D. and Schubert, G. (2002) Geodynamics. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511807442
[37] Clauser, C. (2003) Numerical simulation of reactive flow in hot aquifers. Springer-Verlag, Berlin.
[38] Clauser, C. (1984) A climatic correction on temperature gradients using surface-temperature series of various periods. Tectonophysics, 103, 33-46.
[39] Anonymous (2005) Shuttle radar topography mission SRTM data.
[40] Denhaene, T. (1997) Bepaling van de warmte-stroom uit boorgaten in Belgie. Master’s Thesis, Kath. University Leuven, Leuven.
[41] Dijkshoorn, L. and Pechnig, R. (2007) Physical properties in the carboniferous and devonian rocks drilled in the rwth-1. Jahrestagung der Deutschen Geophysikalischen Gesellschaft, Aachen.
[42] Dijkshoorn, L. (2012) The earth as energy stock—Natural and enhanced behavior of thermal resistances, heat storage capacity and heat flow in the earth and their relevance to the geothermal power of a deep coaxial borehole heat exchangerin the Eifel-Maas region. Ph.D. Thesis, RWTH Aachen University, Aachen.
[43] Speer, S. (2005) Design calculations for optimising of a deep borehole heat-exchanger. Master’s Thesis, RWTH Aachen University, Aachen.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.