Ectomycorrhizal diversity at five different tree species in forests of the Taunus Mountains in Central Germany


Ectomycorrhizal fungi were investigated on five different forest tree species growing in pure stands on the south slope of the Taunus Mountains, which are situated at the northern end of the Rhine rift valley in Central Germany. Mycorrhizal fungi accompanying the genus Xerocomus were identified and their frequencies counted. Using ITS markers, 22 different fungal species were identified down to species level and 6 down to genus level. On European beech (Fagus sylvatica) 16 fungal species and 4 genera were identified and on Sessile oak (Quercus petraea) 16 ectomycorrhizal species and 2 genera were determined. On both deciduous trees we observed exclusively: Cortinarius subsertipes, Genea hispidula, Lactarius quietus, Tylopilus felleus and a Melanogaster genus. On Norway spruce (Picea abies) we identified 13 different mycorrhizal species and 3 different genera, on Silver fir (Abies alba) 12 species and 3 genera, and in association with European larch (Larix decidua) 11 species and 3 genera. On these conifers Cortinarius anomalus, Lactarius necator and a Piloderma genus occurred exclusively. Comparisons with published data of ectomycorrhizal diversity on the same five tree species, growing in different areas of Germany and Europe, led to the conclusion that there is relative site specificity for ectomycorrhizal communities. Upper soil compartments of the stands investigated in the Taunus Mountainssuffer from soil acidification (pH-H20 ~3.7 to ~4.8). However, a clear correlation between upper soil pH-values and fungal diversity was not observed. On the other hand, nitrate concentrations in upper soil compartments (~26 to ~91 kgNO3-/ha) were higher in older stands as compared to younger ones. Higher nitrate concentrations in upper soils correlated with lower numbers of mycorrhizal individuals.

Share and Cite:

Schirkonyer, U. , Bauer, C. and Rothe, G. (2013) Ectomycorrhizal diversity at five different tree species in forests of the Taunus Mountains in Central Germany. Open Journal of Ecology, 3, 66-81. doi: 10.4236/oje.2013.31009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Smith, S.E. and Read, D.J. (1997) Mycorrhizal symbiosis. 2nd Edition, Academic Press, San Diego. doi:10.1016/B978-012652840-4/50015-2
[2] Anderson, I.C. and Cairney, J.W.G. (2007) Ectomycorrhizal fungi: Exploring the mycelial frontier. FEMS Microbiology Reviews, 31, 388-406. doi:10.1111/j.1574-6976.2007.00073.x
[3] Vogelei, A. and Rothe, G.M. (1991) Vergleichende enzymatische Untersuchungen zum Kohlenhydrat-Stoffwechsel der Feinstwurzeln von Fichten (Picea abies [L.] Karst.) an zwei unterschiedlich stark durch Protonenimmissionen belasteten Standorten (Hoglwald und Hils). Forstwissen-schaftliche Forschungen (Beiheft zum Forstwissenschaft- lichen Centralblatt), 39, 60-67.
[4] Dahne, J., Klingelhofer, D., Ott, M. and Rothe, G.M. (1995) Liming induced stimulation of amino acid metabolism in mycorrhizal roots of Norway spruce (Picea abies [L.] Karst.). Plant and Soil, 173, 67-77. doi:10.1007/BF00155519
[5] Kleinschmidt, R., Hentschke, I. and Rothe, G.M. (1998) Effect of season and soil treatments on carbohydrate concentrations in Norway spruce (Picea abies [L.] Karst.) mycorrhizae. Tree Physiology, 18, 325-332. doi:10.1093/treephys/18.5.325
[6] Nehls, U., Grunze, N., Willmann, M., Reich, M. and Küster, H. (2007) Sugar for my honey: Carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry, 68, 82-91. doi:10.1016/j.phytochem.2006.09.024
[7] Cavagnaro, T.R. and Martin, A.W. (2010) The role of mycorrhizas in plant nutrition: Field and mutant based approaches. 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1-6 August 2010, Brisbane, 148-151.
[8] Plassard, C. and Dell, B. (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiology, 30, 1129-1139. doi:10.1093/treephys/tpq063
[9] Smith, S.E. and Smith, F.A. (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104, 1-13. doi:10.3852/11-229
[10] Steffens, F., Arendholz, W.R. and Storrer, J.G. (1994) Die Ektomycorrhiza: Eine Symbiose unter der Lupe. Biologie in unserer Zeit, 24, 211-218. doi:10.1002/biuz.19940240423
[11] Agerer, R. (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza, 11, 107-114. doi:10.1007/s005720100108
[12] Agerer, R. (1987-2002) Colour atlas of ectomycorrhizae. Einhorn Verlag, Schwabisch Gmünd.
[13] Strasburger, E., Noll, F. and Schenck, H. (1998) Strasburger—Lehrbuch der Botanik. Spektrum Akademischer Verlag, Heidelberg. doi:10.5962/bhl.title.25240
[14] Kreuzwieser, J., Stulen, I., Wiersema, P. and Vaalburg, W. (2000) Nitrate transport processes in Fagus-Laccaria-Mycorrhizae. Plant and Soil, 220, 107-117. doi:10.1023/A:1004775230952
[15] Montanini, B., Moretto, N., Soragni, E., Percudani, R. and Ottonello, S. (2002) A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii. Fungal Genetics and Biology, 36, 22-34. doi:10.1016/S1087-1845(02)00001-4
[16] Hodge, A., Helgason, T. and Fitter, A.H. (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology, 3, 267-273. doi:10.1016/j.funeco.2010.02.002
[17] Nehls, U., Gohringer, F., Wittulsky, S. and Dietz, S. (2010) Fungal carbohydrate support in the ectomycorrhizal symbiosis: A review. Plant Biology, 12, 292-301. doi:10.1111/j.1438-8677.2009.00312.x
[18] Nilsson, L.O. and Wallander, H. (2003) The production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytologist, 158, 409-416. doi:10.1046/j.1469-8137.2003.00728.x
[19] Trudell, S.A. and Edmonds, R.L. (2004) Macrofungus communities correlate with moisture and nitrogen abundance in two old-growth conifer forests, Olympic National Park, Washington, USA. Canadian Journal of Botany, 82, 781-800. doi:10.1139/b04-057
[20] Waldzustandsbericht (2010) Nordwestdeutsche forstliche Versuchsanstalt, Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz.
[21] White, T.J., Bruns, T.D., Lee, S. and Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Chapter 38. In: Innis, M., Gelfand, D., Sninsky, J. and White, T.J., Eds., PCR Protocols: A Guide to Methods and Applications, Academic Press, Orlando.
[22] Gardes, M. and Bruns, T.D. (1993) ITS primers with enhanced specificity for basidiomycetes—Application to identification of mycorhizae and rusts. Molecular Ecology, 2, 113-118. doi:10.1111/j.1365-294X.1993.tb00005.x
[23] Haese, A. and Rothe, G.M. (2003) Characterization and frequencies of the IGS1 alleles of the ribosomal DNA of Xerocomus pruinatus mycorrhizae. Forest Genetics, 10, 103-112.
[24] Doyle, J.J. and Doyle, J.A. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15.
[25] Koljalg, U., Larsson, K.H., Abarenkov, K., Nilsson, R.H., Alexander, I.J., Eberhardt, U., Erland, S., H?iland, K., Kj?ller, R., Larsson, E., Pennanen, T., Sen, R., Taylor, A.F.S., Tedersoo, L., Vr?lstad ,T. and Ursing, B.M. (2005) UNITE: A database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist, 166, 1063-1068. doi:10.1111/j.1469-8137.2005.01376.x
[26] Shannon, C.E. and Weaver, W. (1949) The mathematical theory of communication. University of Illinois Press, Urbana.
[27] Wiener, N. (1949) The interpolation, extrapolation, and smoothing of stationary time series. Wiley, New York.
[28] Pielou, E.C. (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144. doi:10.1016/0022-5193(66)90013-0
[29] Ulrich, B. (1986) Natural and anthropogenic components of soil acidification. Zeitschrift für Pflanzenernahrung und Bodenkunde, 149, 702-717. doi:10.1002/jpln.19861490607
[30] Nylund, J.E., Dahlberg, A., Hogberg, N., Karen, O., Grip, K. and Jonsson, L. (1995) Methods for studying species composition of mycorrhizal fungal communities in ecological studies and environmental monitoring. In: Bonfante, P., Nuti, M. and Stocchi, V., Eds., Biotechnology of Ectomycorrhizae, Plenum Press, New York, 229-240. doi:10.1007/978-1-4615-1889-1_20
[31] Eberhardt, U., Lutz, W. and Kottke, I. (1999) Molecular and morphological discrimination between Tylospora fibrillosa and Tylospora asterophora mycorrhizae. Canadian Journal of Botany, 77, 11-21. doi:10.1139/b98-182
[32] Sakakibara, S.M., Jones, M.D., Gillespie, M., Hagerman, S.M., Forrest, M.E., Simard, S.W. and Durall, D.M. (2002) A comparison of ectomycorrhiza identification based on morphotyping and PCR-RFLP analysis. Mycological Research, 106, 868-878. doi:10.1017/S0953756202006263
[33] Engelmann, H.D. (1978) Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia, 18, 378-380.
[34] Cremer, E. (2009) Population genetics of Silver fir (Abies alba Mill.) in the Northern Black Forest—Preconditions for the recolonization of windthrow areas and associated ectomycorrhizal communities. Ph.D. Thesis, Philipp University of Marburg, Marburg.
[35] Comandini, O., Pacioni, G. and Rinaldi, A.C. (1998) Fungi in ectomycorrhizal associations of silver fir (Abies alba Miller) in Central Italy. Mycorrhiza, 7, 323-328. doi:10.1007/s005720050200
[36] Lang, C., Seven, J. and Polle, A. (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza, 21, 297-308. doi:10.1007/s00572-010-0338-y
[37] Schauf, M. and Rothe, G.M. (1996) Incidence of mycorrhizae in two beech woods of the Rhein-Main area. Endocytobiosis and Cell Research, 12, 200. auf.pdf
[38] Leski, T., Au?ina, A. and Rudawska, M. (2008) The ectomycorrhizal status of European larch (Larix decidua Mill.) seedlings from bare-root forest nurseries. Forest Ecology and Management, 256, 2136-2144. doi:10.1016/j.foreco.2008.08.004
[39] Qian, X.M., Kottke, I. and Oberwinkler, F. (1998) Influence of liming and acidification on the activity of the mycorrhizal communities in a Picea abies (L.) Karst Stand. Plant and Soil, 199, 99-109. doi:10.1023/A:1004243207414
[40] Wilson, C.A. (2005) Ectomycorrhizae of sessile oak (Quercus petraea (Matt.) Liebl.): Their distribution, abundance and aluminium content with respect to limed and unlimed regions of Merzalben Forest District 04/ 0705, Palatinate Forest, Rheinland-Pfalz, Germany. Ph.D. Thesis, University of Mainz, Mainz.
[41] Sammler, P. (2004) Die Roteiche (Quercus rubra L., Fagaceae) als stark mykotrophe Geholzart—Ein Vergleich der Makromyzetenflora unter Roteichen und einheimischen Eichen in der Umgebung von Potsdam, Deutschland. Feddes Repertorium, 115, 102-120. doi:10.1002/fedr.200311030
[42] Quiring, R., Braun, S. and Flückiger, W. (1997) N-deposition, N-nutrition and free amino acids in the foliage of Picea abies (L.) Karst. and Fagus sylvatica L. from Swiss forest stands. The 4th International Symposium on Responses of Plant Metabolism to Air Pollution and Global Change, 1-5 April 1997, Egmond aan Zee, 56.
[43] Rennenberg, H., Kreutzer, K., Papen, H. and Weber, P. (1998) Consequences of high loads of nitrogen for spruce (Picea abies) and beech (Fagus sylvatica) forests. New Phytologist, 139, 71-86. doi:10.1046/j.1469-8137.1998.00181.x
[44] He, X.M. and Suzuki, A. (2002) Effect of nitrogen resources and pH on growth and fruit body formation of Coprinopsis phlyctidospora. Fungal Diversity, 12, 35-44.
[45] Matzner, E. and Murach, D. (1995) Soil changes induced by air pollution and their implication for forests in Central Europe. Water Air and Soil Pollution, 85, 63-76. doi:10.1007/BF00483689
[46] Hiltbrunner, E., Thomas, V., Braun, S. and Flückiger, W. (2001) Effects of enhanced nitrogen deposition upon roots and soil variables of beech forests in Switzerland. The 5th International Symposium on “Response of Plant Metabolism to Air Pollution and Global Change”, 14 November 2001, Pulawy.
[47] Erland, S. and Taylor, A.F.S. (2002) Diversity of ectomycorrhizal communities in relation to the abiotic environment. In: Van der Heijden, M. and Sanders, I., Eds., The Ecology of Mycorrhizas, Ecological Studies Series, Volume 157, Springer-Verlag, Heidelberg, 163-200.
[48] Brandrud, T.E. (1995) The effects of experimental nitrogen addition on the ectomycorrhizal fungus flora in an oligotrophic spruce forest at Gardsjon, Sweden. Forest Ecology and Management, 71, 111-122. doi:10.1016/0378-1127(94)06088-Z
[49] Wallenda, T. and Kottke, I. (1998) Nitrogen deposition and ectomycorrhizas. New Phytologist, 139, 169-187. doi:10.1046/j.1469-8137.1998.00176.x
[50] Arnolds, E. (1991) Decline of ectomycorrhizal fungi in Europe. Agriculture Ecosystems & Environment, 35, 209-244. doi:10.1016/0167-8809(91)90052-Y
[51] Rücker, T. and Peer, T. (1988) Die Pilzflora des hell-brunner Berges: Ein historischer Vergleich. Berichte des Naturwissenschaftlich-Medizinischen Vereins Salzburg, 9, 147-161.
[52] Grosse-Brauckmann, H. and Grosse-Braukmann, G. (1978) Zur Pilzflora der Umgebung von Darmstadt vor 50 Jahren und heute (ein Vergleich der floristischen Befunde Franz Kellenbachs aus der Zeit von 1918 bis 1942 mit dem gegenwartigen Vorkommen der Arten). Zeitschrift für Mykologie, 44, 257-269.
[53] Schlechte, G. (1986) Zur Mykorrhizapilzflora in geschadigten Forstbestanden. Zeitschrift für Mykologie, 52, 225-232.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.