Polymer Supported Lipid Bilayers

Abstract

Lipid bilayers are some of the most fascinating self-assembled structure in living nature. Not only do they serve as the protective boundary of cells and their internal organelles, they also organize and host major parts of the biochemical machinery for cellular communication and transmembrane transport. To study aspects of cellular membranes in a controlled manner, solid supported planar bilayers have served as reliable tools for many decades. They have been used in a large variety of studies ranging from fundamental investigations of membranes and their constituents to the dissection of cellular signaling mechanisms. However, there are limitations to these systems and recently a class of new systems in which the lipid bilayer is supported on a soft, polymer cushion has emerged. Here, we review the different polymer cushioned bilayer systems and discuss their manufacture and advantages.

Share and Cite:

I. McCabe and M. Forstner, "Polymer Supported Lipid Bilayers," Open Journal of Biophysics, Vol. 3 No. 1A, 2013, pp. 59-69. doi: 10.4236/ojbiphy.2013.31A008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. K. Tamm and H. M. McConnell, “Supported Phospholipid-Bilayers,” Biophysical Journal, Vol. 47, No. 1, 1985, pp. 105-113. doi:10.1016/S0006-3495(85)83882-0
[2] G. W. Gordon, G. Berry, X. H. Liang, B. Levine and B. Herman, “Quantitative Fluorescence Resonance Energy Transfer Measurements Using Fluorescence Microscopy,” Biophysical Journal, Vol. 74, No. 5, 1998, pp. 2702-2713. doi:10.1016/S0006-3495(98)77976-7
[3] M. B. Forstner, C. K. Yee, A. N. Parikh and J. T. Groves, “Lipid Lateral Mobility and Membrane Phase Structure Modulation by Protein Binding,” Journal of the American Chemical Society, Vol. 128, No. 47, 2006, pp. 15221-15227. doi:10.1021/ja064093h
[4] J. T. Groves, R. Parthasarathy and M. B. Forstner, “Fluorescence Imaging of Membrane Dynamics,” Annual Review of Biomedical Engineering, Vol. 10, No. 1, 2008, pp. 311-338.
[5] S. Rozovsky, M. B. Forstner, H. Sondermann and J. T. Groves, “Single Molecule Kinetics of Enth Binding to Lipid Membranes,” Journal of Physical Chemistry B, Vol. 116, No. 17, 2012, pp. 5122-5131. doi:10.1021/jp210045r
[6] D. Axelrod, T. P. Burghardt and N. L. Thompson, “Total Internal-Reflection Fluorescence,” Annual Review of Biophysics and Bioengineering, Vol. 13, No. 1, 1984, pp. 247-268.
[7] D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson and W. W. Webb, “Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics,” Biophysical Journal, Vol. 16, No. 9, 1976, pp. 1055-1069. doi:10.1016/S0006-3495(76)85755-4
[8] K. D. Mossman, G. Campi, J. T. Groves and M. L. Dustin, “Altered Tcr Signaling from Geometrically Repatterned Immunological Synapses,” Science, Vol. 310, No. 5751, 2005, pp. 1191-1193. doi:10.1126/science.1119238
[9] K. Salaita, P. M. Nair, R. S. Petit, R. M. Neve, D. Das, J. W. Gray, “Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by Epha2,” Science, Vol. 327, No. 5971, 2010, pp. 1380-1385. doi:10.1126/science.1181729
[10] Y. Shao, Y. D. Jin, J. L. Wang, L. Wang, F. Zhao and S. J. Dong, “Conducting Polymer Polypyrrole Supported Bilayer Lipid Membranes,” Biosensors & Bioelectronics, Vol. 20, No. 7, 2005, pp. 1373-1379. doi:10.1016/j.bios.2004.06.001
[11] M. Tanaka and E. Sackmann, “Supported Membranes as Biofunctional Interfaces and Smart Biosensor Platforms,” Physica Status Solidia-Applications and Materials Science, Vol. 203, No. 14, 2006, pp. 3452-3462.
[12] M. Trojanowicz and A. Mulchandani, “Analytical Applications of Planar Bilayer Lipid Membranes,” Analytical and Bioanalytical Chemistry, Vol. 379, No. 3, 2004, pp. 347-350. doi:10.1007/s00216-004-2611-4
[13] M. M. Baksh, M. Jaros and J. T. Groves, “Detection of Molecular Interactions at Membrane Surfaces through Colloid Phase Transitions,” Nature, Vol. 427, No. 6970, 2004, pp. 139-141. doi:10.1038/nature02209
[14] M. Stelzle, R. Miehlich and E. Sackmann, “2-Dimensional Microelectrophoresis in Supported Lipid Bilayers,” Biophysical Journal, Vol. 63, No. 5, 1992, pp. 1346-1354. doi:10.1016/S0006-3495(92)81712-5
[15] A. van Oudenaarden and S. G. Boxer, “Brownian Ratchets: Molecular Separations in Lipid Bilayers Supported on Patterned Arrays,” Science, Vol. 285, No. 5430, 1999, pp. 1046-1048. doi:10.1126/science.285.5430.1046
[16] M. Fischer, A. Bacher, I. Haase, M. Tristl and E. Sackmann, “Design of Biofunctional Assemblies on Solids through Recombinant Spherical Bacterial Protein Lumazine Synthase,” ChemPhysChem, Vol. 2, No. 10, 2001, pp. 623-627. doi:10.1002/1439-7641(20011015)2:10<623::AID-CPHC623>3.0.CO;2-R
[17] V. Borisenko, T. Lougheed, J. Hesse, E. Fureder-Kitzmuller, N. Fertig and J. C. Behrends, “Simultaneous Optical and Electrical Recording of Single Gramicidin Channels,” Biophysical Journal, Vol. 84, No. 1, 2003, pp. 612-622. doi:10.1016/S0006-3495(03)74881-4
[18] Y. F. Dufrene and M. F. Garcia-Parajo, “Recent Progress in Cell Surface Nanoscopy: Light and Force in the Near-Field,” Nano Today, Vol. 7, No. 5, 2012, pp. 390-403. doi:10.1016/j.nantod.2012.08.002
[19] M. Tanaka, J. Hermann, I. Haase, M. Fischer and S. G. Boxer, “Frictional Drag and Electrical Manipulation of Recombinant Proteins in Polymer-Supported Membranes,” Langmuir, Vol. 23, No. 10, 2007, pp. 5638-5644. doi:10.1021/la0628219
[20] R. J. Good, “Contact-Angle, Wetting, and Adhesion—A Critical-Review,” Journal of Adhesion Science and Technology, Vol. 6, No. 12, 1992, pp. 1269-1302. doi:10.1163/156856192X00629
[21] P. F. Rios, H. Dodiuk, S. Kenig, S. McCarthy and A. Dotan, “The Effect of Polymer Surface on the Wetting and Adhesion of Liquid Systems,” Journal of Adhesion Science and Technology, Vol. 21, No. 3-4, 2007, pp. 227-241. doi:10.1163/156856107780684567
[22] J. Piehler, A. Brecht, R. Valiokas, B. Liedberg and G. Gauglitz, “A High-Density Poly(Ethylene Glycol) Polymer Brush for Immobilization on Glass-Type Surfaces,” Biosensors & Bioelectronics, Vol. 15, No. 9-10, 2000, pp. 473-481. doi:10.1016/S0956-5663(00)00104-4
[23] E. Sackmann and M. Tanaka, “Supported Membranes on Soft Polymer Cushions: Fabrication, Characterization and Applications,” Trends in Biotechnology, Vol. 18, No. 2, 2000, pp. 58-64. doi:10.1016/S0167-7799(99)01412-2
[24] M. Kuhner, R. Tampe and E. Sackmann, “Lipid Monoand Bilayer Supported on Polymer Films: Composite Polymer-Lipid Films on Solid Substrates,” Biophysical Journal, Vol. 67, No. 1, 1994, pp. 217-226. doi:10.1016/S0006-3495(94)80472-2
[25] M. Wagner and L. Tamm, “Tethered Polymer-Supported Planar Lipid Bilayers for Reconstitution of Integral Membrane Proteins: Silane-Polyethyleneglycol-Lipid as a Cushion and Covalent Linker,” Biophysical Journal, Vol. 79, 2000, pp. 1400-1414. doi:10.1016/S0006-3495(00)76392-2
[26] T. Wang, D. Li, X. Lu, A. Khmaladze, X. Han and S. Ye, “Single Lipid Bilayers Constructed on Polymer Cushion Studied by Sum Frequency Generation Vibrational Spectroscopy,” Journal of Physical Chemistry C, Vol. 115, No. 15, 2011, pp. 7613-7620.
[27] N. Kohli, S. Vaidya, R. Ofoli, R. Worden and I. Lee, “Arrays of Lipid Bilayers and Liposomes on Patterned Polyelectrolyte Templates,” Journal of Colloid and Interface Science, Vol. 301, No. 2, 2006, pp. 461-469.
[28] Y. L. Wang and R. J. Pelham, “Preparation of a Flexible, Porous Polyacrylamide Substrate for Mechanical Studies of Cultured Cells,” Molecular Motors and the Cytoskeleton, Vol. 298, 1998, pp. 489-496.
[29] H. Towbin, T. Staehelin and J. Gordon, “Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets—Procedure and Some Applications,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 76, No. 9, 1979, pp. 4350-4354. doi:10.1073/pnas.76.9.4350
[30] E. C. Muniz and G. Geuskens, “Compressive Elastic Modulus of Polyacrylamide Hydrogels and Semi-Ipns with Poly(N-Isopropylacrylamide),” Macromolecules, Vol. 34, No. 13, 2001, pp. 4480-4484. doi:10.1021/ma001192l
[31] C. E. Kandow, P. C. Georges, P. A. Janmey and K. A. Beningo, “Polyacrylamidc Hydrogels for Cell Mechanics: Steps toward Optimization and Alternative Uses,” Cell Mechanics, Vol. 83, 2007, pp. 29-46. doi:10.1016/S0091-679X(07)83002-0
[32] J. Tse and A. Engler, “Preparation of Hydrogel Substrates with Tunable Mechanical Properties,” Current Protocols in Cell Biology, Vol. 10, No. 16, 2010, pp. 1-16.
[33] F. Yang, R. Murugan, S. Ramakrishna, X. Wang, Y. X. Ma and S. Wang, “Fabrication of Nano-Structured Porous Plla Scaffold Intended for Nerve Tissue Engineering,” Biomaterials, Vol. 25, No. 10, 2004, pp. 1891-1900.
[34] Y. Duan, J. Liu, H. Sato, J. Zhang, H. Tsuji and Y. Ozaki, “Molecular Weight Dependence of the Poly(L-Lactide)/ Poly(D-Lactide) Stereocomplex at the Air-Water Interface,” Biomacromolecules, Vol. 7, No. 10, 2006, pp. 2728-2735.
[35] F. Rehfeldt and M. Tanaka, “Hydration Forces in Ultrathin Films of Cellulose,” Langmuir, Vol. 19, 2003, pp. 1467-1473.
[36] H. Hillebrandt, G. Wiegand, M. Tanaka and E. Sackmann, “High Electric Resistance Polymer/Lipid Composite Films on Indium-Tin-Oxide Electrodes,” Langmuir, Vol. 15, 1999, pp. 8451-8459.
[37] J. Groves, L. Mahal and C. Bertozzi, “Control of Cell Adhesion and Growth with Micropatterned Supported Lipid Membranes,” Langmuir, Vol. 17, No. 17, 2001, pp. 5129-5133.
[38] R. Falshaw, R. H. Furneaux and D. E. Stevenson, “Agars from Nine Species of Red Seaweed in the Genus Curdiea (Gracilariaceae, Rhodophyta),” Carbohydrate Research, Vol. 308, No. 1-2, 1998, pp. 107-115. doi:10.1016/S0008-6215(98)00049-4
[39] N. K. Jerne and A. A. Nordin, “Plaque Formation in Agar by Single Antibody-Producing Cells,” Science, Vol. 140, No. 356, 1963, p. 405. doi:10.1126/science.140.3565.405
[40] W. Y. Gu, H. Yao, C. Y. Huang and H. S. Cheung, “New Insight into Deformation-Dependent Hydraulic Permeability of Gels and Cartilage, and Dynamic Behavior of Agarose Gels in Confined Compression,” Journal of Biomechanics, Vol. 36, No. 4, 2003, pp. 593-598. doi:10.1016/S0021-9290(02)00437-2
[41] H. Yuan, A. Leitmannova-Ottova and H. Ti Tien, “An Agarose-Stabilized Blm: A New Method for Forming Bilayer Lipid Membranes,” Materials Science and Engineering C, Vol. 4, No. 1, 1996, pp. 35-38.
[42] X. Lu, A. Leitmannova-Ottova and H. Tien, “Biophysical Aspects of Agar-Gel Supported Bilayer Lipid Nembranes: A New Method for Forming and Studying Planar Bilayer Lipid Membranes,” Bioelectroehemistry and Bioenergetics, Vol. 39, No. 2, 1996, pp. 285-289.
[43] T. Ide and T. Yanagida, “An Artificial Lipid Bilayer Formed on an Agarose-Coated Glass for Simultaneous Electrical and Optical Measurement of Single Ion Channels,” Biochemical and Biophysical Research Communications, Vol. 265, No. 2, 1999, pp. 595-599.
[44] K. Katagiri and F. Caruso, “Monodisperse Polyelectrolyte-Supported Asymmetric Lipid-Bilayer Vesicles,” Advanced Materials, Vol. 17, No. 6, 2005, pp. 738-743. doi:10.1002/adma.200401441
[45] G. Lee, Y. Lee and B. Kyung, “Layer-by-Layer Assembly of Zeolite Crystals on Glass with Polyelectrolytes as Ionic Inkers,” Journal of the American Chemical Society, Vol. 123, No. 40, 2001, pp. 9769-9779. doi:10.1021/ja010517q
[46] E. B. Watkins, R. J. El-Khouri, C. E. Miller, B. G. Seaby, J. Majewski and C. M. Marques, “Structure and Thermodynamics of Lipid Bilayers on Polyethylene Glycol Cushions: Fact and Fiction of Peg Cushioned Membranes,” Langmuir, Vol. 27, No. 22, 2011, pp. 13618-13628. doi:10.1021/la200622e
[47] J. Jimenez, A. Heim, G. Matthews and N. Alcantar, “Construction and Characterization of Soft-Supported Lipid Bilayer Membranes for Biosensors Application,” IEEE Annual International Conference of the Engineering in Medicine and Biology Society, Vol. 1, No. 1, 2006, pp. 4119-4122.
[48] S. M. Ryan, G. Mantovani, X. X. Wang, D. M. Haddleton and D. J. Brayden, “Advances in Pegylation of Important Biotech Molecules: Delivery Aspects,” Expert Opinion on Drug Delivery, Vol. 5, No. 4, 2008, pp. 371-383. doi:10.1517/17425247.5.4.371
[49] N. Ngadi, J. Abrahamson, C. Fee and K. Morison, “Are Peg Molecules a Universal Protein Repellent?” International Journal of Biological and Life Sciences, Vol. 5, No. 3, 2009, pp. 106-110.
[50] G. Pasut and F. Veronese, “State of the Art in Pegylation: The Great Versatility Achieved after Forty Years of Research,” Journal of Controlled Release, Vol. 161, No. 161, 2012, pp. 461-472. doi:10.1016/j.jconrel.2011.10.037
[51] F. F. Davis, “Commentary—The Origin of Pegnology,” Advanced Drug Delivery Reviews, Vol. 54, No. 4, 2002, pp. 457-458. doi:10.1016/S0169-409X(02)00021-2
[52] R. Konradi, B. Pidhatika, A. Muhlebach and M. Textor, “Poly-2-Methyl-2-Oxazoline: A Peptide-Like Polymer for Protein-Repellent Surfaces,” Langmuir, Vol. 24, No. 3, 2008, pp. 613-616.
[53] R. Konradi, B. Pidhatika, Q. Li and M. Textor, “Poly(2-Methyl-2-Oxazoline): Protein-Like Polymer for the Fabrication of Functional Non-Fouling Surface Coatings,” European Cells and Materials, Vol. 14, No. 3, 2007, p. 131.
[54] O. Purrucker, A. Fortig, R. Jordan and M. Tanaka, “Supported Membranes with Well-Defined Polymer Tethers-Incorporation of Cell Receptors,” ChemPhysChem, Vol. 5, No. 3, 2004, pp. 327-335. doi:10.1002/cphc.200300863
[55] C. A. Naumann, O. Prucker, T. Lehmann, J. Ruhe, W. Knoll and C. W. Frank, “The Polymer-Supported Phospholipid Bilayer: Tethering as a New Approach to Substrate-Membrane Stabilization,” Biomacromolecules, Vol. 3, No. 1, 2002, pp. 27-35. doi:10.1021/bm0100211
[56] A. Kibrom, R. F. Roskamp, U. Jonas, B. Menges, W. Knoll and H. Paulsen, “Hydrogel-Supported Protein-Tethered Bilayer Lipid Membranes: A New Approach to- ward Polymer-Supported Lipid Membranes,” Soft Matter, Vol. 7, No. 1, 2011, pp. 237-246. doi:10.1039/c0sm00618a
[57] J. Majewski, J. Y. Wong, C. K. Park, M. Seitz, J. N. Israelachvili and G. S. Smith, “Structural Studies of Polymer-Cushioned Lipid Bilayers,” Biophysical Journal, Vol. 75, No. 5, 1998, pp. 2363-2367. doi:10.1016/S0006-3495(98)77680-5
[58] K. Adlkofer, M. Tanaka, H. Hillebrandt, G. Wiegand, E. Sackmann and T. Bolom, “Electrochemical Passivation of Gallium Arsenide Surface with Organic Self-Assembled Monolayers in Aqueous Electrolytes,” Applied Physics Letters, Vol. 76, No. 22, 2000, pp. 3313-3315. doi:10.1063/1.126636
[59] Y. G. Jin, Y. X. Qiao and X. P. Hou, “The Effects of Chain Number and State of Lipid Derivatives of Nucleosides on Hydrogen Bonding and Self-Assembly through the Investigation of Langmuir-Blodgett Films,” Applied Surface Science, Vol. 252, No. 22, 2006, pp. 7926-7929. doi:10.1016/j.apsusc.2005.09.073
[60] H. L. Brockman, M. M. Momsen, J. R. Knudtson, S. T. Miller, G. Graff and J. M. Yanni, “Interactions of Olopatadine and Selected Antihistamines with Model and Natural Membranes,” Ocular Immunology and Inflammation, Vol. 11, No. 4, 2003, pp. 247-268. doi:10.1076/ocii.11.4.247.18261
[61] A. V. Hughes, J. R. Howse, A. Dabkowska, R. A. L. Jones, M. J. Lawrence and S. J. Roser, “Floating Lipid Bilayers Deposited on Chemically Grafted Phosphatidylcholine Surfaces,” Langmuir, Vol. 24, No. 5, 2008, pp. 1989-1999. doi:10.1021/la702050b
[62] E. T. Castellana and P. S. Cremer, “Solid Supported Lipid Bilayers: From Biophysical Studies to Sensor Design,” Surface Science Reports, Vol. 61, No. 10, 2006, pp. 429-444. doi:10.1016/j.surfrep.2006.06.001
[63] Y. Lin, D. Minner, V. Herring and C. Naumann, “Physisorbed Polymer-Tethered Lipid Bilayer with Lipopolymer Gradient,” Materials, Vol. 5, No. 3, 2012, pp. 2243-2257. doi:10.3390/ma5112243
[64] K. Morigaki, T. Baumgart, A. Offenhausser and W. Knoll, “Patterning Solid-Supported Lipid Bilayer Membranes by Lithographic Polymerization of a Diacetylene Lipid,” Angewandte Chemie-International Edition, Vol. 40, No. 1, 2001, pp. 172-174. doi:10.1002/1521-3773(20010105)40:1<172::AID-ANIE172>3.0.CO;2-G
[65] J. T. Groves, L. K. Mahal and C. R. Bertozzi, “Control of Cell Adhesion and Growth with Micropatterned Supported Lipid Membranes,” Langmuir, Vol. 17, No. 17, 2001, pp. 5129-5133. doi:10.1021/la010481f
[66] C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, “Geometric Control of Cell Life and Death,” Science, Vol. 276, No. 5317, 1997, pp. 1425-1428. doi:10.1126/science.276.5317.1425
[67] I. M. Thornell, J. P. Wu, X. F. Liu and M. O. Bevensee, “Pip2 Hydrolysis Stimulates the Electrogenic Na+-Bicarbonate Cotransporter Nbce1-B and -C Variants Expressed in Xenopus Laevis Oocytes,” Journal of Physiology-London, Vol. 590, No. 23, 2012, pp. 5993-6011. doi:10.1113/jphysiol.2012.242479
[68] K. J. Seu, A. P. Pandey, F. Haque, E. A. Proctor, A. E. Ribbe and J. S. Hovis, “Effect of Surface Treatment on Diffusion and Domain Formation in Supported Lipid Bilayers,” Biophysical Journal, Vol. 92, No. 7, 2007, pp. 2445-2450. doi:10.1529/biophysj.106.099721
[69] D. Trebotich, G. H. Miller and M. D. Bybee, “A Penalty Method to Model Particle Interactions in DNA-Laden Flows,” Journal of Nanoscience and Nanotechnology, Vol. 8, No. 7, 2008, pp. 3749-3756.
[70] K. P. N. Bruns, L. M. Bergeron, T. A. Whitehead and D. S. Clark, “Mechanical Nanosensor Based on Fret within a Thermosome for Damage-Reporting Polymeric Materials,” Angewante Chemie Internatioanl Edition, Vol. 48, No. 31, 2009, pp. 5666-5669.
[71] H. Hillebrandt, M. Tanaka and E. Sackmann, “A Novel Membrane Charge Sensor: Sensitive Detection of Surface Charge at Polymer/Lipid Composite Films on Indium Tin Oxide Electrodes,” Journal of Physical Chemistry B, Vol. 106, No. 2, 2002, pp. 477-486. doi:10.1021/jp011693o
[72] R. J. El-Khouri, D. A. Bricarello, E. B. Watkins, C. Y. Kim, C. E. Miller, T. E. Patten, “Ph Responsive Polymer Cushions for Probing Membrane Environment Interactions,” Nano Letters, Vol. 11, No. 5, 2011, pp. 2169-2172. doi:10.1021/nl200832c
[73] J. S. Leng, X. Lan, Y. J. Liu and S. Y. Du, “Shape-Memory Polymers and Their Composites: Stimulus Methods and Applications,” Progress in Materials Science, Vol. 56, No. 7, 2011, pp. 1077-1135. doi:10.1016/j.pmatsci.2011.03.001
[74] P. T. Mather, X. F. Luo and I. A. Rousseau, “Shape Memory Polymer Research,” Annual Review of Materials Research, Vol. 39, No. 1, 2009, pp. 445-471. doi:10.1146/annurev-matsci-082908-145419
[75] K. A. Davis, K. A. Burke, P. T. Mather and J. H. Henderson, “Dynamic Cell Behavior on Shape Memory Polymer Substrates,” Biomaterials, Vol. 32, No. 9, 2011, pp. 2285-2293. doi:10.1016/j.biomaterials.2010.12.006

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.