Share This Article:

Neurodevelopmental Timing of Ethanol Exposure May Contribute to Observed Heterogeneity of Behavioral Deficits in a Mouse Model of Fetal Alcohol Spectrum Disorder (FASD)

Abstract Full-Text HTML Download Download as PDF (Size:1126KB) PP. 85-99
DOI: 10.4236/jbbs.2013.31009    4,628 Downloads   7,867 Views   Citations

ABSTRACT

Maternal drinking during pregnancy can result in a wide spectrum of cognitive and behavioral abnormalities termed fetal alcohol spectrum disorders (FASD). The heterogeneity observed in FASD-related phenotypes can be attributed to a number of environmental and genetic factors; however, ethanol dose and timing of exposure may have significant influences. Here, we report the behavioral effects of acute, binge-like ethanol exposure at three neurodevelopmental times corresponding to the first, second, and third trimester of human development in C57BL/6J mice. Results show that developmental ethanol exposure consistently delays the development of basic motor skill reflexes and coordination as well as impairs spatial learning and memory. Observed changes in activity and anxiety-related behaviors, however, appear to be dependent on timing of alcohol exposure. The variability in behaviors between different treatment models suggests that these may be useful in evaluating the mechanisms disrupted by ethanol at specific neurodevelopmental times. The results provide further evidence that, regardless of developmental stage, the developing brain is acutely sensitive to alcohol exposure.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Mantha, M. Kleiber and S. Singh, "Neurodevelopmental Timing of Ethanol Exposure May Contribute to Observed Heterogeneity of Behavioral Deficits in a Mouse Model of Fetal Alcohol Spectrum Disorder (FASD)," Journal of Behavioral and Brain Science, Vol. 3 No. 1, 2013, pp. 85-99. doi: 10.4236/jbbs.2013.31009.

References

[1] J. Bertrand, L. L. Floyd and M. K. Weber, “Fetal Alcohol Syndrome Prevention Team, Division of Birth Defects and Developmental Disabilities, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention (CDC). Guidelines for Identifying and Referring Persons with Fetal Alcohol Syndrome,” Recommendations and Reports, Vol. 54, 2005, pp. 1-14.
[2] R. J. Sokol, V. Delaney-Black and B. Nordstrom, “Fetal Alcohol Spectrum Disorder,” Journal of the American Medical Association, Vol. 290, No. 22, 2003, pp. 29962999. doi:10.1001/jama.290.22.2996
[3] E. L. Abel and R. J. Sokol, “Incidence of Fetal Alcohol Syndrome and Economic Impact of FAS-Related Anomalies,” Drug and Alcohol Dependence, Vol. 19, No. 1, 1987, pp. 51-70. doi:10.1016/0376-8716(87)90087-1
[4] S. J. Kelly, C. R. Goodlett and J. H. Hannigan, “Animal Models of Fetal Alcohol Spectrum Disorders: Impact of the Social Environment,” Developmental Disabilities Research Reviews, Vol. 15, No. 3, 2009, pp. 200-208. doi:10.1002/ddrr.69
[5] P. D. Sampson, A. P. Streissguth, F. L. Bookstein, R. E. Little, S. K. Clarren, P. Dehaene, J. W. Hanson and J. M. Graham Jr., “Incidence of Fetal Alcohol Syndrome and Prevalence of Alcohol-Related Neurodevelopmental Disorder,” Teratology, Vol. 56, No. 5, 1997, pp. 317-326.
[6] B. Stade, A. Ali, D. Bennett, D. Campbell, M. Johnston, C. Lens, S. Tran and G. Koren, “The Burden of Prenatal Exposure to Alcohol: Revised Measurement of Cost,” Canadian Journal of Clinical Pharmacology, Vol. 16, No. 1, 2009, pp. e91-e102.
[7] V. Bhatara, R. Loudenberg and R. Ellis, “Association of Attention Deficit Hyperactivity Disorder and Gestational Alcohol Exposure: An Exploratory Study,” Journal of Attention Disorders, Vol. 9, No. 3, 2006, pp. 515-522. doi:10.1177/1087054705283880
[8] R. A. Colorado, J. Shumake, N. M. Conejo, H. GonzalezPardo and F. Gonzalez-Lima, “Effects of Maternal Separation, Early Handling, and Standard Facility Rearing on Orienting and Impulsive Behavior of Adolescent Rats,” Behavioural Processes, Vol. 71, No. 1, 2006, pp. 51-58. doi:10.1016/j.beproc.2005.09.007
[9] J. A. Engle and K. A. Kerns, “Reinforcement Learning in Children with FASD,” Journal of Population Therapeutics and Clinical Pharmacology, Vol. 18, No. 1, 2011, pp. e17-e27.
[10] K. G. Hellemans, J. H. Sliwowska, P. Verma and J. Weinberg, “Prenatal Alcohol Exposure: Fetal Programming and Later Life Vulnerability to Stress, Depression and Anxiety Disorders,” Neuroscience & Biobehavioral Reviews, Vol. 34, No. 6, 2010, pp. 791-807. doi:10.1016/j.neubiorev.2009.06.004
[11] K. G. Hellemans, P. Verma, E. Yoon, W. K. Yu, A. H. Young and J. Weinberg, “Prenatal Alcohol Exposure and Chronic Mild Stress Differentially Alter Depressiveand Anxiety-Like Behaviors in Male and Female Offspring,” Alcoholism: Clinical & Experimental Research, Vol. 34, No. 4, 2010, pp. 633-645. doi:10.1111/j.1530-0277.2009.01132.x
[12] L. E. Herman, M. C. Acosta and P. N. Chang, “Gender and Attention Deficits in Children Diagnosed with a Fetal Alcohol Spectrum Disorder,” Canadian Journal of Clinical Pharmacology, Vol. 15, No. 3, 2008, pp. e411-e419.
[13] P. W. Kodituwakku, “Defining the Behavioral Phenotype in Children with Fetal Alcohol Spectrum Disorders: A Review,” Neuroscience & Biobehavioral Reviews, Vol. 31, No. 2, 2007, pp. 192-201. doi:10.1016/j.neubiorev.2006.06.020
[14] C. Famy, A. P. Streissguth and A. S. Unis, “Mental Illness in Adults with Fetal Alcohol Syndrome or Fetal Alcohol Effects,” American Journal of Psychiatry, Vol. 155, No. 4, 1998, pp. 552-554.
[15] C. R. Green, A. M. Mihic, S. M. Nikkel, B. C. Stade, C. Rasmussen, D. P. Munoz and J. N. Reynolds, “Executive Function Deficits in Children with Fetal Alcohol Spectrum Disorders (FASD) Measured Using the Cambridge Neuropsychological Tests Automated Battery (CANTAB),” Journal of Child Psychology and Psychiatry, Vol. 50, No. 6, 2009, pp. 688-697. doi:10.1111/j.1469-7610.2008.01990.x
[16] T. Jirikowic, H. C. Olson and D. Kartin, “Sensory Processing, School Performance, and Adaptive Behavior of Young School-Age Children with Fetal Alcohol Spectrum Disorders,” Physical & Occupational Therapy in Pediatrics, Vol. 28, No. 2, 2008, pp. 117-136. doi:10.1080/01942630802031800
[17] S. N. Mattson, E. P. Riley, L. Gramling, D. C. Delis and K. L. Jones, “Neuropsychological Comparison of Alcohol-Exposed Children with or without Physical Features of Fetal Alcohol Syndrome,” Neuropsychology, Vol. 12, No. 1, 1998, pp. 146-153. doi:10.1037/0894-4105.12.1.146
[18] R. F. Berman and J. H. Hannigan, “Effects of Prenatal Alcohol Exposure on the Hippocampus: Spatial Behavior, Electrophysiology, and Neuroanatomy,” Hippocampus, Vol. 10, 2000, pp. 94-110.
[19] J. A. Osborn, C. K. Kim, J. Steiger and J. Weinberg, “Prenatal Ethanol Exposure Differentially Alters Behavior in Males and Females on the Elevated Plus Maze,” Alcoholism: Clinical & Experimental Research, Vol. 22, No. 3, 1998, pp. 685-696. doi:10.1111/j.1530-0277.1998.tb04312.x
[20] T. D. Tran, K. Cronise, M. D. Marino, W. J. Jenkins and S. J. Kelly, “Critical Periods for the Effects of Alcohol Exposure on Brain Weight, Body Weight, Activity and Investigation,” Behavioural Brain Research, Vol. 116, No. 1, 2000, pp. 99-110. doi:10.1016/S0166-4328(00)00263-1
[21] D. F. Wozniak, R. E. Hartman, M. P. Boyle, S. K. Vogt, A. R. Brooks, T. Tenkova, C. Young, J. W. Olney and L. J. Muglia, “Apoptotic Neurodegeneration Induced by Ethanol in Neonatal Mice Is Associated with Profound Learning/Memory Deficits in Juveniles Followed by Progressive Functional Recovery in Adults,” Neurobiology of Disease, Vol. 17, No. 3, 2004, pp. 403-414. doi:10.1016/j.nbd.2004.08.006
[22] K. K. Caldwell, S. Sheema, R. D. Paz, S. L. SamudioRuiz, M. H. Laughlin, N. E. Spence, M. J. Roehlk, S. N. Alcon and A. M. Allan, “Fetal Alcohol Spectrum Disorder-Associated Depression: Evidence for Reductions in the Levels of Brain-Derived Neurotrophic Factor in a Mouse Model,” Pharmacology Biochemistry and Behavior, Vol. 90, No. 4, 2008, pp. 614-624. doi:10.1016/j.pbb.2008.05.004
[23] L. M. Carneiro, J. P. Diogenes, S. M. Vasconcelos, G. F. Aragao, E. C. Noronha, P. B. Gomes and G. S. Viana, “Behavioral and Neurochemical Effects on Rat Offspring after Prenatal Exposure to Ethanol,” Neurotoxicology and Teratology, Vol. 27, No. 4, 2005, pp. 585-592. doi:10.1016/j.ntt.2005.06.006
[24] K. Cronise, M. D. Marino, T. D. Tran and S. J. Kelly, “Critical Periods for the Effects of Alcohol Exposure on Learning in Rats,” Behavioral Neuroscience, Vol. 115, No. 1, 2001, pp. 138-145. doi:10.1037/0735-7044.115.1.138
[25] K. Fernandez, W. F. Caul, M. Haenlein and C. V. Vorhees, “Effects of Prenatal Alcohol on Homing Behavior, Maternal Responding and Open-Field Activity in Rats,” Neurobehavioral Toxicology & Teratology, Vol. 5, No. 3, 1983, pp. 351-356.
[26] P. S. Jensen, R. E. Shervette3rd, S. N. Xenakis and J. Richters, “Anxiety and Depressive Disorders in Attention Deficit Disorder with Hyperactivity: New Findings,” American Journal of Psychiatry, Vol. 150, No. 8, 1993, pp. 1203-1209.
[27] M. J. O’Connor and B. Paley, “The Relationship of Prenatal Alcohol Exposure and the Postnatal Environment to Child Depressive Symptoms,” Journal of Pediatric Psychology, Vol. 31, No. 1, 2006, pp. 50-64. doi:10.1093/jpepsy/jsj021
[28] J. Dobbing and J. Sands, “Comparative Aspects of the Brain Growth Spurt,” Early Human Development, Vol. 3, No. 1, 1979, pp. 79-83. doi:10.1016/0378-3782(79)90022-7
[29] C. Ikonomidou, P. Bittigau, M. J. Ishimaru, D. F. Wozniak, C. Koch, K. Genz, M. T. Price, V. Stefovska, F. Horster, T. Tenkova, K. Dikranian and J. W. Olney, “Ethanol-Induced Apoptotic Neurodegeneration and Fetal Alcohol Syndrome,” Science, Vol. 287, No. 5455, 2000, pp. 1056-1060. doi:10.1126/science.287.5455.1056
[30] K. L. Howdeshell, “A Model of the Development of the Brain as a Construct of the Thyroid System,” Environmental Health Perspectives, Vol. 110, No. 3, 2002, pp. 337-348. doi:10.1289/ehp.02110s3337
[31] S. Bake, J. D. Tingling and R. C. Miranda, “Ethanol Exposure during Pregnancy Persistently Attenuates Cranially Directed Blood Flow in the Developing Fetus: Evidence from Ultrasound Imaging in a Murine Second Trimester Equivalent Model,” Alcoholism: Clinical and Experimental Research, Vol. 36, No. 5, 2011, pp. 748758. doi:10.1111/j.1530-0277.2011.01676.x
[32] C. Guerri, A. Bazinet and E. P. Riley, “Foetal Alcohol Spectrum Disorders and Alterations in Brain and Behaviour,” Alcohol, Vol. 44, No. 2, 2009, pp. 108-114. doi:10.1093/alcalc/agn105
[33] J. R. West, S. J. Kelly and D. R. Pierce, “Severity of Alcohol-Induced Deficits in Rats during the Third Trimester Equivalent Is Determined by the Pattern of Exposure,” Alcohol, Vol. 1, 1987, pp. 461-465.
[34] R. Caetano, S. Ramisetty-Mikler, L. R. Floyd and C. McGrath, “The Epidemiology of Drinking among Women of Child-Bearing Age,” Alcoholism: Clinical and Experimental Research, Vol. 30, No. 6, 2006, pp. 1023-1030. doi:10.1111/j.1530-0277.2006.00116.x
[35] H. A. Flynn, S. M. Marcus, K. L. Barry and F. C. Blow, “Rates and Correlates of Alcohol Use among Pregnant Women in Obstetrics Clinics,” Alcoholism: Clinical and Experimental Research, Vol. 27, No. 1, 2003, pp. 81-87.
[36] A. Malassine, J. L. Frendo and D. Evain-Brion, “A Comparison of Placental Development and Endocrine Functions between the Human and Mouse Model,” Human Reproduction Update, Vol. 9, No. 6, 2003, pp. 531-539. doi:10.1093/humupd/dmg043
[37] B. Zhang, X. Wang and A. J. Nazarali, “Ascorbic Acid Reverses Valproic Acid-Induced Inhibition of Hoxa2 and Maintains Glutathione Homeostasis in Mouse Embryos in Culture,” Cellular and Molecular Neurobiology, Vol. 30, No. 1, 2010, pp. 137-148. doi:10.1007/s10571-009-9438-7
[38] J. De Miranda, K. Yaddanapudi, M. Hornig, G. Villar, R. Serge and W. I. Lipkin, “Induction of Toll-Like Receptor 3-Mediated Immunity during Gestation Inhibits Cortical Neurogenesis and Causes Behavioral Disturbances,” MBio, Vol. 1, No. 4, 2010, Article ID: e00176-10. doi:10.1128/mBio.00176-10
[39] T. Levav, T. Saar, L. Berkovich and H. Golan, “Perinatal Exposure to GABA-Transaminase Inhibitor Impaired Psychomotor Function in the Developing and Adult Mouse,” International Journal of Developmental Neuroscience, Vol. 22, No. 3, 2004, pp. 137-147. doi:10.1016/j.ijdevneu.2004.03.004
[40] J. M. Hill, M. A. Lim and M. M. Stone, “Developmental Milestones in the Newborn Mouse,” In: I. Gozes, Ed., Neuropeptide Techniques, Humana Press, Totowa, 2008, p. 149. doi:10.1007/978-1-60327-099-1_10
[41] M. L. Kleiber, E. Wright and S. M. Singh, “Maternal Voluntary Drinking in C57BL/6J Mice: Advancing a Model for Fetal Alcohol Spectrum Disorders,” Behavioural Brain Research, Vol. 223, No. 2, 2011, pp. 376387. doi:10.1016/j.bbr.2011.05.005
[42] J. Clarkson and A. E. Herbison, “Postnatal Development of Kisspeptin Neurons in Mouse Hypothalamus; Sexual Dimorphism and Projections to Gonadotropin-Releasing Hormone Neurons,” Endocrinology, Vol. 147, No. 12, 2006, pp. 5817-5825. doi:10.1210/en.2006-0787
[43] D. D. Langleben, G. Austin, G. Krikorian, H. W. Ridlehuber, M. L. Goris and H. W. Strauss, “Interhemispheric Asymmetry of Regional Cerebral Blood Flow in Prepubescent Boys with Attention Deficit Hyperactivity Disorder,” Nuclear Medicine Communications, Vol. 22, No. 12, 2001, pp. 1333-1340. doi:10.1097/00006231-200112000-00009
[44] N. D. Volkow, S. J. Gatley, J. S. Fowler, G. J. Wang and J. Swanson, “Serotonin and the Therapeutic Effects of Ritalin,” Science, Vol. 299, No. 5463, 2000, p. 11. doi:10.1126/science.288.5463.11a
[45] J. N. Crawley and R. Paylor, “A Proposed Test Battery and Constellations of Specific Behavioral Paradigms to Investigate the Behavioral Phenotypes of Transgenic and Knockout Mice,” Hormones and Behavior, Vol. 31, No. 3, 1997, pp. 197-211. doi:10.1006/hbeh.1997.1382
[46] B. Sunyer, S. Patil, H. Hoger and G. Lubec, “Barnes Maze, a Useful Task to Assess Spatial Reference Memory in the Mice,” Nature Protocols, 2007. doi:10.1038/nprot.2007.390
[47] F. E. Harrison, R. S. Reiserer, A. J. Tomarken and M. P. McDonald, “Spatial and Nonspatial Escape Strategies in the Barnes Maze,” Learning & Memory, Vol. 13, No. 6, 2006, pp. 809-819. doi:10.1101/lm.334306
[48] T. P. O’Leary, V. Savoie and R. E. Brown, “Learning, Memory and Search Strategies of Inbred Mouse Strains with Different Visual Abilities in the Barnes Maze,” Behavioural Brain Research, Vol. 216, No. 2, 2011, pp. 531-542. doi:10.1016/j.bbr.2010.08.030
[49] H. C. Becker and C. L. Randall, “Effects of Prenatal Ethanol Exposure in C57BL Mice on Locomotor Activity and Passive Avoidance Behavior,” Psychopharmacology, Vol. 97, No. 1, 1989, pp. 40-44. doi:10.1007/BF00443410
[50] R. E. Brown, “Behavioural Phenotyping of Transgenic Mice,” Canadian Journal of Experimental Psychology, Vol. 61, No. 4, 2007, pp. 328-344. doi:10.1037/cjep2007033
[51] S. L. Inman-Wood, M. T. Williams, L. L. Morford and C. V. Vorhees, “Effects of Prenatal Cocaine on Morris and Barnes Maze Tests of Spatial Learning and Memory in the Offspring of C57BL/6J Mice,” Neurotoxicology and Teratology, Vol. 22, No. 4, 2000, pp. 547-557. doi:10.1016/S0892-0362(00)00084-2
[52] K. L. McIlwain, M. Y. Merriweather, L. A. Yuva-Paylor and R. Paylor, “The Use of Behavioral Test Batteries: Effects of Training History,” Physiology & Behavior, Vol. 73, No. 5, 2001, pp. 705-717. doi:10.1016/S0031-9384(01)00528-5
[53] P. N. Pompl, M. J. Mullan, K. Bjugstad and G. W. Arendash, “Adaptation of the Circular Platform Spatial Memory Task for Mice: Use in Detecting Cognitive Impairment in the APP(SW) Transgenic Mouse Model for Alzheimer’s Disease,” Journal of Neuroscience Methods, Vol. 87, No. 1, 1999, pp. 87-95. doi:10.1016/S0165-0270(98)00169-1
[54] W. O. Kalberg, B. Provost, S. J. Tollison, B. G. Tabachnick, L. K. Robinson, H. Eugene Hoyme, P. M. Trujillo, D. Buckley, A. S. Aragon and P. A. May, “Comparison of Motor Delays in Young Children with Fetal Alcohol Syndrome to Those with Prenatal Alcohol Exposure and with No Prenatal Alcohol Exposure,” Alcoholism: Clinical and Experimental Research, Vol. 30, No. 12, 2006, pp. 20372045. doi:10.1111/j.1530-0277.2006.00250.x
[55] N. L. Staisey and P. A. Fried, “Relationships between Moderate Maternal Alcohol Consumption during Pregnancy and Infant Neurological Development,” Journal of Studies on Alcohol, Vol. 44, No. 2, 1983, pp. 262-270.
[56] J. Altman and K. Sudarshan, “Postnatal Development of Locomotion in the Laboratory Rat,” Animal Behaviour, Vol. 23, No. 4, 1975, pp. 896-920. doi:10.1016/0003-3472(75)90114-1
[57] D. J. Bonthius and J. R. West, “Alcohol-Induced Neuronal Loss in Developing Rats: Increased Brain Damage with Binge Exposure,” Alcoholism: Clinical and Experimental Research, Vol. 14, No. 1, 1990, pp. 107-118. doi:10.1111/j.1530-0277.1990.tb00455.x
[58] M. W. Burke, R. M. Palmour, F. R. Ervin and M. Ptito, “Neuronal Reduction in Frontal Cortex of Primates after Prenatal Alcohol Exposure,” Neuroreport, Vol. 20, No. 1, 2009, pp. 13-17. doi:10.1097/WNR.0b013e32831b449c
[59] T. A. Cudd, W. J. Chen, S. E. Parnell and J. R. West, “Third Trimester Binge Ethanol Exposure Results in Fetal Hypercapnea and Acidemia but Not Hypoxemia in Pregnant Sheep,” Alcoholism: Clinical and Experimental Research, Vol. 25, No. 2, 2001, pp. 269-276. doi:10.1111/j.1530-0277.2001.tb02208.x
[60] L. E. Kotch and K. K. Sulik, “Experimental Fetal Alcohol Syndrome: Proposed Pathogenic Basis for a Variety of Associated Facial and Brain Anomalies,” American Journal of Medical Genetics, Vol. 44, No. 2, 1992, pp. 168176. doi:10.1002/ajmg.1320440210
[61] D. E. Mayock, D. Ness, R. L. Mondares and C. A. Gleason, “Binge Alcohol Exposure in the Second Trimester Attenuates Fetal Cerebral Blood Flow Response to Hypoxia,” Journal of Applied Physiology, Vol. 102, No. 3, 2007, pp. 972-977. doi:10.1152/japplphysiol.00956.2006
[62] L. Mrzljak, H. B. Uylings, I. Kostovic and C. G. Van Eden, “Prenatal Development of Neurons in the Human Prefrontal Cortex: I. A Qualitative Golgi Study,” Journal of Comparative Neurology, Vol. 271, No. 3, 1988, pp. 355-386. doi:10.1002/cne.902710306
[63] A. Diamond, “Close Interrelation of Motor Development and Cognitive Development and of the Cerebellum and Prefrontal Cortex,” Child Development, Vol. 71, No. 1, 2000, pp. 44-56. doi:10.1111/1467-8624.00117
[64] M. Matsumura, N. Sadato, T. Kochiyama, S. Nakamura, E. Naito, K. Matsunami, R. Kawashima, H. Fukuda and Y. Yonekura, “Role of the Cerebellum in Implicit Motor Skill Learning: A PET Study,” Brain Research Bulletin, Vol. 63, No. 6, 2004, pp. 471-483. doi:10.1016/j.brainresbull.2004.04.008
[65] J. R. West and K. M. Hamre, “Effects of Alcohol Exposure during Different Periods of Development: Changes in Hippocampal Mossy Fibers,” Brain Research, Vol. 349, 1985, pp. 280-284.
[66] K. L. Jones, D. W. Smith, C. N. Ulleland and P. Streissguth, “Pattern of Malformation in Offspring of Chronic Alcoholic Mothers,” Lancet, Vol. 301, No. 7815, 1973, pp. 1267-1271. doi:10.1016/S0140-6736(73)91291-9
[67] K. L. Jones, “The Effects of Alcohol on Fetal Development,” Birth Defects Research Part C: Embryo Today, Vol. 93, No. 1, 2011, pp. 3-11.
[68] L. Kooistra, B. Ramage, S. Crawford, M. Cantell, S. Wormsbecker, B. Gibbard and B. J. Kaplan, “Can Attention Deficit Hyperactivity Disorder and Fetal Alcohol Spectrum Disorder Be Differentiated by Motor and Balance Deficits?” Human Movement Science, Vol. 28, No. 4, 2009, pp. 529-542. doi:10.1016/j.humov.2009.01.007
[69] H. C. Steinhausen, J. Willms, C. W. Metzke and H. L. Spohr, “Behavioural Phenotype in Foetal Alcohol Syndrome and Foetal Alcohol Effects,” Developmental Medicine & Child Neurology, Vol. 45, No. 3, 2003, pp. 179182. doi:10.1111/j.1469-8749.2003.tb00927.x
[70] A. P. Streissguth, H. M. Barr, D. C. Martin and C. S. Herman, “Effects of Maternal Alcohol, Nicotine, and Caffeine Use during Pregnancy on Infant Mental and Motor Development at Eight Months,” Alcoholism: Clinical and Experimental Research, Vol. 4, No. 2, 1980, pp. 152-164. doi:10.1111/j.1530-0277.1980.tb05630.x
[71] H. C. Leiner, A. L. Leiner and R. S. Dow, “The Human Cerebro-Cerebellar System: Its Computing, Cognitive, and Language Skills,” Behavioural Brain Research, Vol. 44, No. 2, 1991, pp. 113-128. doi:10.1016/S0166-4328(05)80016-6
[72] K. Dikranian, Y. Q. Qin, J. Labruyere, B. Nemmers and J. W. Olney, “Ethanol-Induced Neuroapoptosis in the Developing Rodent Cerebellum and Related Brain Stem Structures,” Developmental Brain Research, Vol. 155, No. 1, 2005, pp. 1-13. doi:10.1016/j.devbrainres.2004.11.005
[73] C. Downing, C. Balderrama-Durbin, J. Hayes, T. E. Johnson and D. Gilliam, “No Effect of Prenatal Alcohol Exposure on Activity in Three Inbred Strains of Mice,” Alcohol, Vol. 44, No. 1, 2009, pp. 25-33. doi:10.1093/alcalc/agn082
[74] K. Marche, T. Danel and R. Bordet, “Fetal Alcohol-Induced Hyperactivity Is Reversed by Treatment with the PPARalpha Agonist Fenofibrate in a Rat Model,” Psychopharmacology, Vol. 214, No. 1, 2011, pp. 285-296. doi:10.1007/s00213-010-1960-2
[75] S. J. Astley, S. I. Magnuson, L. M. Omnell and S. K. Clarren, “Fetal Alcohol Syndrome: Changes in Craniofabcial Form with Age, Cognition, and Timing of Ethanol Exposure in the Macaque,” Teratology, Vol. 59, 1999, pp. 163-172.
[76] S. L. Fryer, C. L. McGee, G. E. Matt, E. P. Riley and S. N. Mattson, “Evaluation of Psychopathological Conditions in Children with Heavy Prenatal Alcohol Exposure,” Pediatrics, Vol. 119, No. 3, 2007, pp. e733-e741. doi:10.1542/peds.2006-1606
[77] I. J. Chasnoff, A. M. Wells, E. Telford, C. Schmidt and G. Messer, “Neurodevelopmental Functioning in Children with FAS, pFAS, and ARND,” Journal of Developmental & Behavioral Pediatrics, Vol. 31, No. 3, 2010, pp. 192201. doi:10.1097/DBP.0b013e3181d5a4e2
[78] E. Peadon and E. J. Elliott, “Distinguishing between Attention-Deficit Hyperactivity and Fetal Alcohol Spectrum Disorders in Children: Clinical Guidelines,” Neuropsychiatric Disease and Treatment, Vol. 6, No. 1, 2010, pp. 509-515. doi:10.2147/NDT.S7256
[79] C. Rasmussen, J. Benz, J. Pei, G. Andrew, G. Schuller, L. Abele-Webster, C. Alton and L. Lord, “The Impact of an ADHD Co-Morbidity on the Diagnosis of FASD,” Canadian Journal of Clinical Pharmacology, Vol. 17, No. 1, 2010, pp. e165-e176.
[80] P. de Zeeuw, F. Zwart, R. Schrama, H. van Engeland and S. Durston, “Prenatal Exposure to Cigarette Smoke or Alcohol and Cerebellum Volume in Attention-Deficit/Hyperactivity Disorder and Typical Development,” Translational Psychiatry, Vol. 2, No. 3, 2012, p. e84.
[81] A. Nardelli, C. Lebel, C. Rasmussen, G. Andrew and C. Beaulieu, “Extensive Deep Gray Matter Volume Reductions in Children and Adolescents with Fetal Alcohol Spectrum Disorders,” Alcoholism: Clinical & Experimental Research, Vol. 35, No. 8, 2011, pp. 1404-1417.
[82] A. Fernandez-Jaen, D. M. Fernandez-Mayoralas, D. Quinones Tapia, B. Calleja-Perez, J. M. Garcia-Segura, S. L. Arribas and N. Munoz Jareno, “Cortical Thickness in Fetal Alcohol Syndrome and Attention Deficit Disorder,” Pediatric Neurology, Vol. 45, 2011, pp. 387-391. doi:10.1016/j.pediatrneurol.2011.09.004
[83] F. X. Castellanos, J. N. Giedd, P. C. Berquin, J. M. Walter, W. Sharp, T. Tran, A. C. Vaituzis, J. D. Blumenthal, J. Nelson, T. M. Bastain, A. Zijdenbos, A. C. Evans, J. L. Rapoport, “Quantitative Brain Magnetic Resonance Imaging in Girls with Attention-Deficit/Hyperactivity Disorder,” Archives of General Psychiatry, Vol. 58, No. 3, 2001, pp. 289-295. doi:10.1001/archpsyc.58.3.289
[84] K. A. Cheon, Y. H. Ryu, Y. K. Kim, K. Namkoong, C. H. Kim and J. D. Lee, “Dopamine Transporter Density in the Basal Ganglia Assessed with [123I]IPT SPET in Children with Attention Deficit Hyperactivity Disorder,” European Journal of Nuclear Medicine and Molecular Imaging, Vol. 30, No. 2, 2003, pp. 306-311. doi:10.1007/s00259-002-1047-3
[85] S. E. Whaley, M. J. O’Connor and B. Gunderson, “Comparison of the Adaptive Functioning of Children Prenatally Exposed to Alcohol to a Nonexposed Clinical Sample,” Alcoholism: Clinical and Experimental Research, Vol. 25, No. 7, 2001, pp. 1018-1024. doi:10.1111/j.1530-0277.2001.tb02311.x
[86] V. M. Ferreira, C. F. Valenzuela and G. S. Morato, “Role of Nitric Oxide-Dependent Pathways in Ethanol-Induced Anxiolytic Effects in Rats,” Alcoholism: Clinical and Experimental Research, Vol. 23, No. 12, 1999, pp. 18981904. doi:10.1111/j.1530-0277.1999.tb04089.x
[87] N. Lan, K. G. Hellemans, L. Ellis, V. Viau and J. Weinberg, “Role of Testosterone in Mediating Prenatal Ethanol Effects on Hypothalamic-Pituitary-Adrenal Activity in Male Rats,” Psychoneuroendocrinology, Vol. 34, No. 9, 2009, pp. 1314-1328. doi:10.1016/j.psyneuen.2009.04.001
[88] S. Lee, I. Choi, S. Kang and C. Rivier, “Role of Various Neurotransmitters in Mediating the Long-Term Endocrine Consequences of Prenatal Alcohol Exposure,” Annals of the New York Academy of Sciences, Vol. 1144, No. 1, 2008, pp. 176-188. doi:10.1196/annals.1418.015
[89] K. G. Hellemans, P. Verma, E. Yoon, W. Yu and J. Weinberg, “Prenatal Alcohol Exposure Increases Vulnerability to Stress and Anxiety-Like Disorders in Adulthood,” Annals of the New York Academy of Sciences, Vol. 1144, No. 1, 2008, pp. 154-175. doi:10.1196/annals.1418.016
[90] M. L. Brady, A. M. Allan and K. K. Caldwell, “A Limited Access Mouse Model of Prenatal Alcohol Exposure That Produces Long-Lasting Deficits in HippocampalDependent Learning and Memory,” Alcoholism: Clinical and Experimental Research, Vol. 36, No. 3, 2011, pp. 457-466. doi:10.1111/j.1530-0277.2011.01644.x
[91] C. R. Goodlett and T. B. Johnson, “Neonatal Binge Ethanol Exposure Using Intubation: Timing and Dose Effects on Place Learning,” Neurotoxicology and Teratology, Vol. 19, No. 6, 1997, pp. 435-446. doi:10.1016/S0892-0362(97)00062-7
[92] B. Zimmerberg, H. L. Sukel and J. D. Stekler, “Spatial Learning of Adult Rats with Fetal Alcohol Exposure: Deficits Are Sex-Dependent,” Behavioural Brain Research, Vol. 42, No. 1, 1991, pp. 49-56. doi:10.1016/S0166-4328(05)80039-7
[93] D. J. Livy, E. K. Miller, S. E. Maier and J. R. West, “Fetal Alcohol Exposure and Temporal Vulnerability: Effects of Binge-Like Alcohol Exposure on the Developing Rat Hippocampus,” Neurotoxicology and Teratology, Vol. 25, No. 4, 2003, pp. 447-458. doi:10.1016/S0892-0362(03)00030-8
[94] J. W. Olney, M. J. Ishimaru, P. Bittigau and C. Ikonomidou, “Ethanol-Induced Apoptotic Neurodegeneration in the Developing Brain,” Apoptosis, Vol. 5, No. 6, 2000, pp. 515-521. doi:10.1023/A:1009685428847
[95] R. J. Sutherland, R. J. McDonald and D. D. Savage, “Prenatal Exposure to Moderate Levels of Ethanol Can Have Long-Lasting Effects on Hippocampal Synaptic Plasticity in Adult Offspring,” Hippocampus, Vol. 7, No. 2, 1997, pp. 232-238.
[96] I. Izquierdo and J. H. Medina, “Memory Formation: The Sequence of Biochemical Events in the Hippocampus and Its Connection to Activity in Other Brain Structures,” Neurobiology of Learning and Memory, Vol. 68, No. 3, 1997, pp. 285-316. doi:10.1006/nlme.1997.3799
[97] C. Rasmussen, J. Pei, S. Manji, C. Loomes and G. Andrew, “Memory Strategy Development in Children with Foetal Alcohol Spectrum Disorders,” Developmental Neurorehabilitation, Vol. 12, No. 4, 2009, pp. 207-214. doi:10.1080/17518420902980126
[98] T. M. Roebuck-Spencer and S. N. Mattson, “Implicit Strategy Affects Learning in Children with Heavy Prenatal Alcohol Exposure,” Alcoholism: Clinical and Experimental Research, Vol. 28, No. 9, 2004, pp. 1424-1431. doi:10.1097/01.ALC.0000139826.25247.5B
[99] L. G. Coleman Jr., I. Oguz, J. Lee, M. Styner and F. T. Crews, “Postnatal Day 7 Ethanol Treatment Causes Persistent Reductions in Adult Mouse Brain Volume and Cortical Neurons with Sex Specific Effects on Neurogenesis,” Alcohol, Vol. 46, No. 6, 2012, pp. 603-612. doi:10.1016/j.alcohol.2012.01.003
[100] T. Tenkova, C. Young, K. Dikranian, J. Labruyere and J. W. Olney, “Ethanol-Induced Apoptosis in the Developing Visual System during Synaptogenesis,” Investigative Ophthalmology & Visual Science, Vol. 44, No. 7, 2003, pp. 2809-2817. doi:10.1167/iovs.02-0982

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.