Expression profiling of putative type 2 diabetes susceptibility genes in human islets and in rat beta cell lines

Abstract

Over 50 single nucleotide polymorphisms (SNPs) have been identified by genome wide association studies (GWAS) to be associated with susceptibility to type 2 diabetes (T2D); however the causal gene in most cases is not known. In this study we sought to identify which may be the most likely causal genes at five T2D GWAS loci by measuring their expression in control and T2D islets, as well as observing their regulation by glucose. We measured the expression of ten genes at five loci (CDKN2A/2B, CDC123/CAMK-1D, HHEX/IDE, TSPAN8/LGR5, and DGKB/TMEM 195), in control and human pancreatic islets by real-time PCR. We then measured the expression of these genes in the rodent pancreatic beta cell line INS-1 exposed to 5.6 mmol/l, 11 mmol/l and 28 mmol/l glucose for 48 hours. We found differential expression of the longest isoform of CDKN2B specifically between control and T2D human islets, whereas the shortest isoform of this gene had no expression in islets. Tmem195 was the only gene to show differential expression in response to increasing glycemia in INS-1 cells under the conditions described. Our study is an example of how the differential expression of genes in loci spanning more than one gene can aid identification of the more likely causal gene.

Share and Cite:

Morrison, F. , Locke, J. , Murray, A. and Harries, L. (2013) Expression profiling of putative type 2 diabetes susceptibility genes in human islets and in rat beta cell lines. Journal of Diabetes Mellitus, 3, 27-32. doi: 10.4236/jdm.2013.31005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Dupuis, J., Langenberg, C., Prokopenko, I., et al. (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genetics, 42, 105-116. doi:10.1038/ng.520
[2] Voight, B.F., Scott, L.J., Steinthorsdottir, V., et al. (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature Genetics, 42, 579-589. doi:10.1038/ng.609
[3] Morris, A.P., Voight, B.F., Teslovich, T.M., et al. (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics, 44, 981-990. doi:10.1038/ng.2383
[4] Vassy J.L. and Meigs J.B. (2012) Is genetic testing useful to predict type 2 diabetes. Best Practice & Research: Clinical Endocrinology & Metabolism, 26, 189-201. doi:10.1016/j.beem.2011.09.002
[5] van de Bunt M. and Gloyn A.L. (2010) From genetic association to molecular mechanism. Current Diabetes Report, 10, 452-466. doi:10.1007/s11892-010-0150-2
[6] Consortium, E.P., Bernstein, B.E., Birney, E., et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57-74. doi:10.1038/nature11247
[7] Thurman, R.E., Rynes, E., Humbert, R., et al. (2012) The accessible chromatin landscape of the human genome. Nature, 489, 75-82. doi:10.1038/nature11232
[8] Neph, S., Vierstra, J., Stergachis, A.B., et al. (2012) An expansive human regulatory lexicon encoded in transcription factor footprints. Nature, 489, 83-90. doi:10.1038/nature11212
[9] Gerstein, M.B., Kundaje, A., Hariharan, M., et al. (2012) Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91-100. doi:10.1038/nature11245
[10] Djebali, S., Davis, C.A., Merkel, A., et al. (2012) Landscape of transcription in human cells. Nature, 489, 101-108. doi:10.1038/nature11233
[11] Sanyal, A., Lajoie, B.R., Jain, G., et al. (2012) The long-range interaction landscape of gene promoters. Nature, 489, 109-113. doi:10.1038/nature11279
[12] Parikh, H., Lyssenko, V. and Groop, L.C.(2009) Prioritizing genes for follow-up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus. BMC Medical Genomics, 2, 72.
[13] Marselli, L., Thorne, J., Dahiya, S., et al. (2010) Gene expression profiles of beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One, 5, e11499. doi:10.1371/journal.pone.0011499
[14] Schadt, E.E., Monks, S.A., Drake, T.A., et al. (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature, 422, 297-302. doi:10.1038/nature01434
[15] Cnop, M. (2008) Fatty acids and glucolipotoxicity in the pathogenesis of type 2 diabetes. Biochemical Society Transactions, 36, 348-352.
[16] Ghanaat-Pour, H., Huang, Z., Lehtihet, M., et al. (2007) Global expression profiling of glucose-regulated genes in pancreatic islets of spontaneously diabetic Goto-Kakizaki rats. Journal of Molecular Endocrinology, 39, 135-150. doi:10.1677/JME-07-0002
[17] Ghanaat-Pour, H. and Sjoholm, A. (2009) Gene expression regulated by pioglitazone and exenatide in normal and diabetic rat islets exposed to lipotoxicity. Diabetes/ Metabolism Research and Reviews, 25, 163-184. doi:10.1002/dmrr.896
[18] Simonis-Bik, A.M., Nijpels, G., van Haeften, T.W., et al. (2010) Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes, 59, 293-301. doi:10.2337/db09-1048
[19] Boesgaard, T.W., Grarup, N., Jorgensen, T., et al. (2010) Variants at DGKB/TMEM195, ADRA2A, GLIS3 and C2CD4B loci are associated with reduced glucose-stimulated beta cell function in middle-aged Danish people. Diabetologia, 53, 1647-1655. doi:10.1007/s00125-010-1753-5
[20] Grarup, N., Rose, C.S., Andersson, E.A., et al. (2007) Studies of association of variants near the HHEX, CDKN2A/ B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: Validation and extension of genome-wide association studies. Diabetes, 56, 3105-3111. doi:10.2337/db07-0856
[21] Cunha, D.A., Hekerman, P., Ladriere, L., et al. (2008) Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. Journal of Cell Science, 121, 2308-2318.
[22] Vandesompele, J., De Preter, K., Pattyn, F., et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, V3, research0034.0031-research- 0034.0011.
[23] Schleinitz, D., Tonjes, A., Bottcher, Y., et al. (2010) Lack of Significant effects of the type 2 diabetes susceptibility loci JAZF1, CDC123/CAMK1D, NOTCH2, ADAMTS9, THADA, and TSPAN8/LGR5 on diabetes and quantitative metabolic traits. Hormone and Metabolic Research, 42, 14-22. doi:10.1055/s-0029-1233480
[24] Berditchevski, F. (2001) Complexes of tetraspanins with integrins: More than meets the eye. Journal of Cell Science, 114, 4143-4151.
[25] Jarikji, Z., Horb, L.D., Shariff, F., et al. (2009) The tetraspanin Tm4sf3 is localized to the ventral pancreas and regulates fusion of the dorsal and ventral pancreatic buds. Development, 136, 1791-1800. doi:10.1242/dev.032235
[26] Champy, M.F., Voci, L.L., Selloum, M., et al. (2011) Reduced body weight in male Tspan8-deficient mice. International Journal of Obesity, 35, 605-617. doi:10.1038/ijo.2010.165
[27] Haegebarth, A. and Clevers, H. (2009) Wnt signaling, lgr5, and stem cells in the intestine and skin. American Journal of Pathology, 174, 715-721. doi:10.2353/ajpath.2009.080758
[28] Carmon, K.S., Gong, X., Lin, Q., et al. (2011) R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America, 108, 11452-11457. doi:10.1073/pnas.1106083108
[29] Lowe, S.W. and Sherr, C.J. (2003) Tumor suppression by Ink4a-Arf: Progress and puzzles. Current Opinion in Genetics & Development, 13, 77-83. doi:10.1016/S0959-437X(02)00013-8
[30] Pruitt, K.D., Tatusova, T., Brown, G.R., et al. (2012) NCBI Reference Sequences (RefSeq): Current status, new features and genome annotation policy. Nucleic Acids Research, 40, D130-D135.
[31] Watschinger, K., Keller, M.A., Golderer, G., et al. (2010) Identification of the gene encoding alkylglycerol mono-oxygenase defines a third class of tetrahydrobiopterindependent enzymes. Proceedings of the National Academy of Sciences of the United States of America, 107, 13672-13677. doi:10.1073/pnas.1002404107
[32] Pascoe, L., Tura, A., Patel, S.K., et al. (2007) Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes, 56, 3101-3104. doi:10.2337/db07-0634

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.