1007/s005720050147 [12] Abbaspour, H., et al. (2012) Tolerance of Mycorrhiza infected Pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Journal of Plant Physiology, 169, 704-709. doi:10.1016/j.jplph.2012.01.014 [13] Boomsma, C.R. and Vyn, T.J. (2008) Maize drought tolerance: Potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Research, 108, 14 31. doi:10.1016/j.fcr.2008.03.002 [14] Giri, B., Kapoor, R. and Mukerji, K.G. (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology, 54, 753-760. doi:10.1007/s00248-007-9239-9 [15] Langenfeld-Heyser, R., et al. (2007) Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt sensitive hybrid poplar Populus (X) canescens. Mycorrhiza, 17, 121-131. doi:10.1007/s00572-006-0084-3 [16] Al-Karaki, G., McMichael, B. and Zak, J. (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14, 263-269. doi:10.1007/s00572-003-0265-2 [17] Ruiz-Lozano, J.M., et al. (2009) Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Molecular Biology, 70, 565-579. doi:10.1007/s11103-009-9492-z [18] Hildebrandt, U., Regvar, M. and Bothe, H. (2007) Arbus cular mycorrhiza and heavy metal tolerance. Phytochemistry, 68, 139-146. doi:10.1016/j.phytochem.2006.09.023 [19] Davies, F.T., et al. (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). Journal of Plant Physiology, 158, 777-786. doi:10.1078/0176-1617-00311 [20] Christie, P., Li, X.L. and Chen, B.D. (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 261, 209-217. doi:10.1023/B:PLSO.0000035542.79345.1b [21] Lecomte, J., St-Arnaud, M. and Hijri, M. (2011) Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microbiology Letters, 317, 43-51. doi:10.1111/j.1574-6968.2011.02209.x [22] Wang, Y.Y., et al. (2008) Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza, 18, 59-68. doi:10.1007/s00572-008-0161-x [23] Gange, A.C., Lindsay, D.E. and Ellis, L.S. (1999) Can arbuscular mycorrhizal fungi be used to control the undesirable grass Poa annua on golf courses? Journal of Applied Ecology, 36, 909-919. doi:10.1046/j.1365-2664.1999.00456.x [24] Schü?ler, A., Schwarzott, D. and Walker, C. (2001) A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycological Research, 105, 1413-1421. doi:10.1017/S0953756201005196 [25] Dassi, B., et al. (1999) Different polypeptide profiles from tomato roots following interactions with arbuscular mycorrhizal (Glomus mosseae) or pathogenic (Phytoph thora parasitica) fungi. Symbiosis, 26, 65-77. [26] Dumas-Gaudot, E., et al. (2004) Proteomics as a way to identify extra-radicular fungal proteins from Glomus intraradices—RiT-DNA carrot root mycorrhizas. Fems Microbiology Ecology, 48, 401-411. doi:10.1016/j.femsec.2004.02.015 [27] Ferrol, N., et al. (2004) Genomics of arbuscular mycorrhizal fungi. In: Dilip, K.A. and George, G.K., Eds., Applied Mycology and Biotechnology, Elsevier, New York, 379-403. [28] Young, J.P.W. (2012) A molecular guide to the taxonomy of arbuscular mycorrhizal fungi. New Phytologist, 193, 823-826. doi:10.1111/j.1469-8137.2011.04029.x [29] Dumas, E., Gianinazzi-Pearson, V. and Gianinazzi, S. (1989) Production of new soluble proteins during VA endomycorrhiza formation. Agriculture, Ecosystems and Environment, 29, 111-114. doi:10.1016/0167-8809(90)90264-E [30] Dumas-Gaudot, E., et al. (1992) Chitinase, chitosanase and β-1,3-glucanase activities in Allium and Pisum roots colonized by Glomus species. Plant Science, 84, 17-24. doi:10.1016/0168-9452(92)90203-X [31] G?rg, A., Weiss, W. and Dunn, M.J. (2004) Current two dimensional electrophoresis technology for proteomics. Proteomics, 4, 3665-3685. doi:10.1002/pmic.200401031 [32] Hochstrasser, D.F., et al. (1988) Methods for increasing the resolution of two-dimensional protein electrophoresis. Analytical Biochemistry, 173, 424-435. doi:10.1016/0003-2697(88)90209-6 [33] Dumas-Gaudot, E., et al. (1994) Chitinase isoforms in roots of various pea genotypes infected with arbuscular mycorrhizal fungi. Plant Science, 99, 27-37. doi:10.1016/0168-9452(94)90117-1 [34] Wu, B., et al. (2011) Study of metal-containing proteins in the roots of Elsholtzia splendens using LA-ICP-MS and LC-tandem mass spectrometry. International Journal of Mass Spectrometry, 307, 85-91. doi:10.1016/j.ijms.2011.01.018 [35] Pozo, M.A.J., et al. (1999) β-1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Science, 141, 149 157. doi:10.1016/S0168-9452(98)00243-X [36] Arines, J., Palma, J.M. and Vilari?o, A. (1993) Comparison of protein patterns in non-mycorrhizal and vesi cular-arbuscular mycorrhizal roots of red clover. New Phytologist, 123, 763-768. doi:10.1111/j.1469-8137.1993.tb03787.x [37] Arines, J., et al. (1994) Protein patterns and superoxide dismutase activity in non-mycorrhizal and arbuscular mycorrhizal Pisum sativum L. plants. Plant and Soil, 166, 37-45. doi:10.1007/BF02185479 [38] Slezack, S., et al. (2001) Purification and partial amino acid sequencing of a mycorrhiza-related chitinase isoform from Glomus mosseae-inoculated roots of Pisum sativum L. Planta, 213, 781-787. doi:10.1007/s004250100551 [39] Maldonado, A.M., et al. (2008) Evaluation of three different protocols of protein extraction for Arabidopsis thaliana leaf proteome analysis by two-dimensional electrophoresis. Journal of Proteomics, 71, 461-472. doi:10.1016/j.jprot.2008.06.012 [40] Faurobert, M., Pelpoir, E. and Cha?b, J. (2006) Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. In: Zivy, M., Ed., Plant Proteomics. Methods and Protocols, Humana Press, Totowa, 9-14. doi:10.1385/1-59745-227-0:9 [41] Carpentier, S.C., et al. (2005) Preparation of protein extracts from recalcitrant plant tissues: An evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics, 5, 2497-2507. doi:10.1002/pmic.200401222 [42] Bona, E., et al. (2010) Proteomic analysis of Pteris vittata fronds: Two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics, 10, 3811-3834. doi:10.1002/pmic.200900436 [43] Schuster, A.M. and Davies, E. (1983) Ribonucleic acid and protein metabolism in pea epicotyls I. The aging process. Plant Physiology, 73, 809-816. doi:10.1104/pp.73.3.809 [44] Hurkman, W.J. and Tanaka, C.K. (1986) Solubilization of plant membrane-proteins for analysis by two-dimensional gel-electrophoresis. Plant Physiology, 81, 802-806. doi:10.1104/pp.81.3.802 [45] Saravanan, R.S. and Rose, J.K.C. (2004) A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics, 4, 2522-2532. doi:10.1002/pmic.200300789 [46] Jellouli, N., et al. (2010) Evaluation of protein extraction methods for vitis vinifera leaf and root proteome analysis by two-dimensional electrophoresis. Journal of Integra tive Plant Biology, 52, 933-940. doi:10.1111/j.1744-7909.2010.00973.x [47] Simoneau, P., et al. (1994) Accumulation of new polypeptides in Ri T-DNA-transformed roots of tomato (Lycopersicon esculentum) during the development of vesicular-arbuscular mycorrhizae. Applied and Environ mental Microbiology, 60, 1810-1813. [48] Samra, A., Dumas-Gaudot, E. and Gianinazzi, S. (1997) Detection of symbiosis-related polypeptides during the early stages of the establishment of arbuscular mycor rhiza between Glomus mosseae and Pisum sativum roots. New Phytologist, 135, 711-722. doi:10.1046/j.1469-8137.1997.00695.x [49] Aloui, A., et al. (2011) Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biology, 11, 75. doi:10.1186/1471-2229-11-75 [50] Bona, E., et al. (2011) Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis. Jour nal of Proteomics, 74, 1338-1350. doi:10.1016/j.jprot.2011.03.027 [51] Cangahuala-Inocente, G.C., et al. (2011) Arbuscular mycorrhizal symbiosis elicits proteome responses oppo site of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species. Mycorrhiza, 21, 473-493. doi:10.1007/s00572-010-0352-0 [52] Dumas-Gaudot, E., et al. (2004) A technical trick for studying proteomics in parallel to transcriptomics in symbiotic root-fungus interactions. Proteomics, 4, 451 453. doi:10.1002/pmic.200300627 [53] Dumas-Gaudot, E., et al. (2009) Functional genomic of arbuscular mycorrhizal symbiosis: Why and how using proteomics symbiotic fungi. In: Varma, A. and Kharkwal, A.C. Ed., Springer, Berlin, 243-274. [54] Aloui, A., et al. (2009) On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: A root proteomic study. Proteo mics, 9, 420-433. doi:10.1002/pmic.200800336 [55] Recorbet, G., et al. (2010) Identification of in planta expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Fungal Genetics and Biology, 47, 608-618. doi:10.1016/j.fgb.2010.03.003 [56] Xiong, J., et al. (2011) Simultaneous isolation of DNA, RNA, and protein from Medicago truncatula L. Elec trophoresis, 32, 321-330. doi:10.1002/elps.201000425 [57] Wang, W., et al. (2003) Protein extraction for two dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electro phoresis, 24, 2369-2375. doi:10.1002/elps.200305500 [58] Wang, W., et al. (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis, 27, 2782-2786. doi:10.1002/elps.200500722 [59] Cox, J. and Mann, M. (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annual Review of Biochemistry, 80, 273-299. [60] Yates, J.R., Ruse, C.I. and Nakorchevsky, A. (2009) Proteomics by mass spectrometry: Approaches, advances and applications. Annual Review of Biomedical Enginee ring, 11, 49-79. doi:10.1146/annurev-bioeng-061008-124934 [61] Harrison, M.J. (9-14 August 1998) Biotrophic interfaces and nutrient transport in plant fungal symbioses. 11th International Workshop on Plant Membrane Biology, Cambridge. [62] Gianinazzi-Pearson, V. (1996) Plant cell responses to arbuscular mycorrhizal fungi: Getting to the roots of the symbiosis. Plant Cell, 8, 1871-1883. [63] Bonfante, P. and Perotto, S. (1995) Tansley-review No-82—Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytologist, 130, 3-21. doi:10.1111/j.1469-8137.1995.tb01810.x [64] Javot, H., et al. (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sci ences of the United States of America, 104, 1720-1725. doi:10.1073/pnas.0608136104 [65] Gianinazzi-Pearson, V., et al. (1991) Enzymatic studies on the metabolism of vesicular arbuscular mycorrhizas. 5. Is H+-atpase a component of atp-hydrolyzing enzyme activities in plant fungus interfaces. New Phytologist, 117, 61-74. doi:10.1111/j.1469-8137.1991.tb00945.x [66] Smith, S.E. and Read, D.J. (1997) Uptake, translocation and transfer of nutrients in mycorrhizal symbioses. Myco rrhizal Symbiosis, 2nd Edition, Academic Press, London, 379. doi:10.1016/B978-012652840-4/50015-2 [67] Ramos, A.C., et al. (2009) Arbuscular mycorrhizal fungi induce differential activation of the plasma membrane and vacuolar H+ pumps in maize roots. Mycorrhiza, 19, 69-80. doi:10.1007/s00572-008-0204-3 [68] Harrison, M.J., Dewbre, G.R. and Liu, J. (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell, 14, 2413-2429. doi:10.1105/tpc.004861 [69] Pumplin, N., et al. (2012) Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Proceedings of the National Academy of Sciences of the United States of America, 109, E665-E672. [70] Guether, M., et al. (2009) A mycorrhizal-specific am monium transporter from Lotus japonicus acquires nitro gen released by arbuscular mycorrhizal fungi. Plant Physiology, 150, 73-83. doi:10.1104/pp.109.136390 [71] Kobae, Y., et al. (2010) Localized expression of arbu scular mycorrhiza-inducible ammonium transporters in soybean. Plant and Cell Physiology, 51, 1411-1415. doi:10.1093/pcp/pcq099 [72] Doidy, J., et al. (2012) Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science, 17, 413-422. doi:10.1016/j.tplants.2012.03.009 [73] Harrison, M.J. (1997) The arbuscular mycorrhizal symbiosis: An underground association. Trends in Plant Science, 2, 54-60. doi:10.1016/S1360-1385(97)82563-0 [74] Boldt, K., et al. (2011) Photochemical processes, carbon assimilation and RNA accumulation of sucrose trans porter genes in tomato arbuscular mycorrhiza. Journal of Plant Physiology, 168, 1256-1263. doi:10.1016/j.jplph.2011.01.026 [75] Helber, N., et al. (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell, 23, 3812-3823. doi:10.1105/tpc.111.089813 [76] Cameron, D.D., et al. (2008) Giving and receiving: Measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytologist, 180, 176-184. doi:10.1111/j.1469-8137.2008.02533.x [77] Guether, M., et al. (2011) LjLHT1.2-a mycorrhiza inducible plant amino acid transporter from Lotus japonicus. Biology and Fertility of Soils, 47, 925-936. doi:10.1007/s00374-011-0596-7 [78] Talbot, J.M. and Treseder, K.K. (2010) Controls over mycorrhizal uptake of organic nitrogen. Pedobiologia, 53, 169-179. doi:10.1016/j.pedobi.2009.12.001 [79] Benabdellah, K., Azcón-Aguilar, C. and Ferrol, N. (1998) Soluble and membrane symbiosis-related polypeptides associated with the development of arbuscular mycorr hizas in tomato (Lycopersicon esculentum). New Phytologist, 140, 135-143. doi:10.1046/j.1469-8137.1998.00255.x [80] Benabdellah, K., Azcon-Aguilar, C. and Ferrol, N. (2000) Alterations in the plasma membrane polypeptide pattern of tomato roots (Lycopersicon esculentum) during the development of arbuscular mycorrhiza. Journal of Expe rimental Botany, 51, 747-754. doi:10.1093/jexbot/51.345.747 [81] Colditz, F., et al. (2004) Proteomic approach: Identi fication of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphano myceseuteiches. Plant Molecular Biology, 55, 109-120. doi:10.1007/s11103-004-0499-1 [82] Valot, B., Gianinazzi, S. and Eliane, D.G. (2004) Sub cellular proteomic analysis of a Medicago truncatula root microsomal fraction. Phytochemistry, 65, 1721-1732. doi:10.1016/j.phytochem.2004.04.010 [83] Valot, B., et al. (2005) Identification of membrane associated proteins regulated by the arbuscular mycorrhi zal symbiosis. Plant Molecular Biology, 59, 565-580. doi:10.1007/s11103-005-8269-2 [84] Valot, B., et al. (2006) A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions. Proteomics, 6, S145-S155. doi:10.1002/pmic.200500403 [85] Abdallah, C., et al. (2012) Optimization of iTRAQ label ling coupled to OFFGEL fractionation as a proteomic workflow to the analysis of microsomal proteins of Medi cago truncatula roots. Proteome Science, 10, 37. doi:10.1186/1477-5956-10-37 [86] Bécard, G. and Fortin, J.A. (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytologist, 108, 211-218. doi:10.1111/j.1469-8137.1988.tb03698.x [87] Recorbet, G., et al. (2009) Fungal proteins in the extra radical phase of arbuscular mycorrhiza: A shotgun prote omic picture. New Phytologist, 181, 248-260. doi:10.1111/j.1469-8137.2008.02659.x [88] Daher, Z., et al. (2010) Proteomic analysis of Medicago truncatula root plastids. Proteomics, 10, 2123-2137. doi:10.1002/pmic.200900345 [89] Dumas-Gaudot, E., et al. (1994) Changes in polypeptide patterns in tobacco roots colonized by two Glomus species. Mycorrhiza, 4, 215-221. doi:10.1007/BF00206783 [90] Bestel-Corre, G., et al. (2002) Proteome analysis and identification of symbiosis-related proteins from Medi cago truncatula Gaertn. by two-dimensional electropho resis and mass spectrometry. Electrophoresis, 23, 122 137. doi:10.1002/1522-2683(200201)23:1<122::AID-ELPS122>3.0.CO;2-4 [91] Amiour, N., et al. (2006) Mutations in DMI3 and SUNN modify the appressorium-responsive root proteome in arbuscular mycorrhiza. Molecular Plant-Microbe Interac tions, 19, 988-997. doi:10.1094/MPMI-19-0988 [92] Schenkluhn, L., et al. (2010) Differential gel electro phoresis (DIGE) to quantitatively monitor early symbiosis and pathogenesis-induced changes of the Medicago truncatula root proteome. Journal of Proteomics, 73, 753-768. doi:10.1016/j.jprot.2009.10.009 [93] Genre, A., et al. (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago trun catula root epidermal cells before infection. Plant Cell, 17, 3489-3499. doi:10.1105/tpc.105.035410 [94] Genre, A., et al. (2008) Prepenetration apparatus assem bly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell, 20, 1407-1420. doi:10.1105/tpc.108.059014 [95] Gaude, N., et al. (2012) Cell type-specific protein and transcription profiles implicate periarbuscular membrane synthesis as an important carbon sink in the mycorrhizal symbiosis. Plant Signaling and Behavior, 7, 461-464. doi:10.4161/psb.19650 [96] ünlü, M., Morgan, M.E. and Minden, J.S. (1997) Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis, 18, 2071-2077. doi:10.1002/elps.1150181133 [97] Tisserant, E., et al. (2012) The transcriptome of the arbu scular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist, 193, 755-769. doi:10.1111/j.1469-8137.2011.03948.x

comments powered by Disqus
ABC Subscription
E-Mail Alert
ABC Most popular papers
Publication Ethics & OA Statement
ABC News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.