Structure and Composition of Non-Infectious Phosphate Calculi Formed in Patients with Low and High Urinary Phosphate Concentrations

Abstract

Objective: The aim of this paper was to assess the relationships among chemical, phase and structural composition and etiopathogenic factors of non-infectious phosphate calculi formed in patients with low and high urinary phosphate concentrations, and to characterize the mechanism of their formation related on biochemical results. Material and Methods: Twelve samples of phosphate renal calculi were obtained, 4 from patients with low phosphaturia and 6 from patients with high urinary phosphate concentrations. Their chemical composition was determined qualitatively by energy dispersive X-ray analysis and quantitatively by spectrophotometric and thermal analysis; and their phase composition was determined by Fourier transform infrared transmission spectroscopy and X-ray diffraction. The structure of the calculi was assessed by scanning electron microscopy. Results: Non-infectious phosphate renal calculi of patients with low phosphaturia consist of poorly crystalline carbonate hydroxyapatite, whereas those of patients with high urinary phosphate concentrations consist of poorly crystalline hydroxyapatite with some amount of calcium oxalate crystals. Calculi of patients with high urinary phosphate concentrations are formed at urinary supersaturation with respect to hydroxyapatite and calcium oxalate about 4 times higher than in patients with low phosphaturia. Conclusion: In patients with low phosphaturia, the non-infectious phosphate renal calculi are formed in urine near pH 7 and contain only poorly crystalline carbonate hydroxyapatite. In patients with high urinary phosphate concentrations and hypercalciuria, the calculi are formed in urine near pH 6 and consist of both poorly crystalline hydroxyapatite and some amount of calcium oxalate crystals.

Share and Cite:

F. Grases, O. Söhnel and I. Gomila, "Structure and Composition of Non-Infectious Phosphate Calculi Formed in Patients with Low and High Urinary Phosphate Concentrations," Open Journal of Urology, Vol. 3 No. 1, 2013, pp. 12-20. doi: 10.4236/oju.2013.31003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. B. Lusmann, “A Classification of Urinary Calculi with Respect to Their Composition and Micromorphology,” Scandinavian Journal of Urology and Nephrology, Vol. 25, No. 2, 1991, pp. 141-150. doi:10.3109/00365599109024549
[2] F. Grases, A. Costa-Bauza, M. Ramis, V. Montesinos and A. Conte, “Simple Classification of Renal Calculi Closely Related to Their Micromorphology and Etiology,” Clinica Chimica Acta, Vol. 322, No. 1-2, 2002, pp. 29-36. doi:10.1016/S0009-8981(02)00063-3
[3] J. H. Parks, F. L. Coe, A. P. Evan and E. M. Worcester, “Urine pH in Renal Calcium Stone Formers Who Do and Do Not Increase Stone Phosphate Content with Time,” Nephrology Dialysis Transplantation, Vol. 24, No. 1, 2009, pp. 130-136. doi:10.1093/ndt/gfn420
[4] D. Vega, N. M. Maalouf and K. Sakhaee, “Increased Propensity for Calcium Phosphate Kidney Stones with Topiramate Use,” Expert Opinion on Drug Safety, Vol. 6, No. 5, 2007, pp. 547-557. doi:10.1517/14740338.6.5.547
[5] F. Grases, O. Sohnel, A. I. Vilacampa and J. G. March, “Phosphates Precipitating from Artificial Urine and Fine Structure of Phosphate Renal Calculi,” Clinica Chimica Acta, Vol. 244, No. 1, 1996, pp. 45-67. doi:10.1016/0009-8981(95)06179-7
[6] F. Grases, A. Costa-Bauza, I. Gomila, M. Ramis, A. Garcia-Raja and R. M. Prieto, “Urinary pH and Renal Lithiasis,” Urological Research, Vol. 40, No. 1, 2012, pp. 41-46. doi:10.1007/s00240-011-0389-3
[7] A. E. Ross, S. Handa, J. E. Lingeman and B. R. Matlaga, “Kidney Stones during Pregnancy: An Investigation into Stone Composition,” Urological Research, Vol. 36, No. 2, 2008, pp. 99-102. doi:10.1007/s00240-008-0138-4
[8] S. Arampatzis, B. Ropke-Rieben, K. Lippuner and B. Hess, “Prevalence and Densitometric Characteristics of Incomplete Distal Renal Tubular Acidosis in Men with Recurrent Calcium Nephrolithiasis,” Urological Research, Vol. 40, No. 1, 2012, pp. 53-59. doi:10.1007/s00240-011-0397-3
[9] M. Daudon, H. Bouzidi and D. Bazin, “Composition and Morphology of Phosphate Stones and Their Relation with Etiology,” Urological Research, Vol. 38, No. 6, 2010, pp. 459-467. doi:10.1007/s00240-010-0320-3
[10] R. M. Prieto, I. Gomila , O. Sohnel , A. Costa-Bauza, O. Bonnin O and F. Grases, “Study on the Structure and Composition of Aortic Valve Calcific Deposits: Etiological Aspects,” Journal of Biophysical Chemistry, Vol. 2, No. 1, 2011, pp. 19-25. doi:10.4236/jbpc.2011.21003
[11] R. G. Bates and G. D. Pinching, “Resolution of the Dissociation Constants of Citric Acid at 0? to 50?, and Determination of Certain Related Thermodynamic Functions,” Journal of the American Chemical Society, Vol. 71, No. 4, 1949, pp. 1274-1283. doi:10.1021/ja01172a039
[12] R. P. Singh, Y. D. Yeboah, E. R. Pambid and P. Debayle, “Stabiliy Constant of the Calcium-Citrate(3-)ion Pair Complex,” Journal of Chemical & Engineering Data, Vol. 36, No. 1, 1991, pp. 52-54. doi:10.1021/je00001a015
[13] National Institute of Standards & Technology, “SRN 2910,” Gaithersburg, 1997, pp. 1-8.
[14] O. Sohnel and F. Grases, “Supersaturaton of Body Fluids, Plasma and Urine, with Respect to Biological Hydroxyapatite,” Urological Research, Vol. 39, No. 6, 2011, pp. 429-436. doi:10.1007/s00240-011-0387-5
[15] A. Ito, K. Maekawa, S. Tsutsumi, F. Ikazaki and T. Tateishi, “Solubility Product of OH-Carbonated Hydroxyapatite,” Journal of Biomedical Materials Research, Vol. 36, No. 4, 1997, pp. 522-528. doi:10.1002/(SICI)1097-4636(19970915)36:4<522::AID-JBM10>3.0.CO;2-C
[16] J. I. Partanen, P. M. Juusola and A. K. Covington, “Re-Evaluation of the First and Second Stoichiometric Dissociation Constants of Oxalic Acid at Temperatures from 0℃ To 60℃ in Aqueous Oxalate Buffer Solutions with or without Sodium or Potassium Chloride,” Journal of Solution Chemistry, Vol. 38, No. 11, 2009, pp. 1385-1416. doi:10.1007/s10953-009-9443-y
[17] J. Streit, L. Ch. Tran-Ho and E. Konigsberger, “Solubility of the Three Calcium Oxalate Hydrates in Sodium Solutions and Urine-Like Liquors,” Monatshefte fur Chemie, Vol. 129, No. 12, 1998, pp. 1255-1236. doi:10.1007/PL00010134
[18] N. Pleshko, A. Boskey and R. Mendelsohn, “Novel Infrared Spectroscopic Method for the Determination of Crystallinity of Hydroxyapatite Minerals,” Biophysical Journal, Vol. 60, No. 4, 1991, pp. 786-793. doi:10.1016/S0006-3495(91)82113-0
[19] F. U. Khand, M. Y. Khumawar, S. Memon and A. F. Ansari, “Use of Infrared Spectroscopy for the Identification of Urinary Tract Calculi,” Vol. 13, 1991, pp. 19-24.
[20] L. G. Gilinskaya, T. N. Grigorieva, G. N. Okuneva and A. Y. Vlasov, “Investigation of Phatogenic Mineralization on Human Heart Valves. 1. Chemical and Phase Composition,” Journal of Structural Chemistry, Vol. 44, No. 4, 2003, pp. 622-631. doi:10.1023/B:JORY.0000017938.42883.9f
[21] J. Kapolos and P. G. Koutsoukos, “Formation of Calcium Phosphate in Aqueous Solutions in the Presence of Carbonate Ions,” Langmuir, Vol. 15, No. 19, 1999, pp. 6557-6562. doi:10.1021/la981285k
[22] P. Carmona, J. Bellanato and E. Escolar, “Infrared and Raman Spectroscopy of Urinary Calculi: A Review,” Biospectroscopy, Vol. 3, No. 5, 1997, pp. 331-346. doi:10.1002/(SICI)1520-6343(1997)3:5<331::AID-BSPY2>3.0.CO;2-5
[23] D. Valarmathi, L. Abaham and S. Gunesakaran, “Growth of Calcium Oxalate Monohydrate Crystal by Gel Method Its Spectroscopic Analysis,” Indian Journal of Pure & Applied Physics, Vol. 48, No. 1, 2010, pp. 36-38.
[24] F. Peters, K. Schwarz and M. Eppie, “The Structure of Bone Studied with Synchrotron X-Ray Diffraction, X-Ray Absorption Spectroscopy and Thermal Analysis,” Thermochimica Acta, Vol. 361, No. 1-2, 2000, pp. 131-138. doi:10.1016/S0040-6031(00)00554-2
[25] Z. Zyman, D. Rokhmistrov, I. Ivanov and M. Epple, “The Influence of Foreign Ions on the Crystal Lattice of Hydroxyapatite upon Heating,” Materialwissenschaft und Werkstofftechnik, Vol. 37, No. 6, 2006, pp. 530-532. doi:10.1002/mawe.200600032
[26] A. Ficai, E. Andronescu, G. Voicu and S. Pall, “Mothodology of in Vitro Characterization of Human Uroliths,” Universitatea Politehnica din Bucuresti Science Bulletin, Series B, Vol. 72, No. 1, 2010, pp. 1454-2331.
[27] T. Hatakeyama and L. Zhenhai, “Handbook of Thermal Analysis,” J. Wiley, New York, 1998, pp. 309-364.
[28] R. F. Pitts, J. L. Ayer, W. A. Schiess and P. Miner, “The Renal Regulation of Acid-Base Balance in Man. III. The Reabsorption and Excretion of Bicarbonate,” The Journal of Clinical Investigation, Vol. 28, No. 1, 1949, pp. 35-44. doi:10.1172/JCI102050
[29] A. Oyane, K. Onuma, T. Kokubo and A. Ito, “Clustering of Calcium Phosphate in the System CaCl2-H3PO4-KCl-H2O,” The Journal of Physical Chemistry B, Vol. 103, No. 39, 1999, pp. 8230-8235. doi:10.1021/jp9910340
[30] B. Finlayson, “Physicochemical Aspects of Urolithiasis,” Kidney International, Vol. 13, No. 5, 1978, pp. 344-360. doi:10.1038/ki.1978.53
[31] L. F. Lozanto, M. A. Pena-Rico, A. Heredia, J. Octolan-Flores, R. Velazquez, I. A. Belio and L. Bucia, “Thermal Analysis Study of Human Bone,” Journal of Materials Science, Vol. 38, No. 23, pp. 4777-4782. doi:10.1023/A:1027483220584
[32] A. Kohutova, P. Honcova , V. Podzemna, P. Bezdicka, E. Vecernikova , M. Louda and J. Seidel, “Thermal Analysis of Kidney Stones and Their Characterization,” Journal of Thermal Analysis and Calorimetry, Vol. 101, No. 2, 2010, pp. 695-699. doi:10.1007/s10973-010-0914-6
[33] B. Strates and C. Georgacopoulou, “Derivatographic Thermal Analysis of Renal Tract Calculi,” Clinical Chemistry, Vol. 15, No. 4, 1969, pp. 307-311.
[34] R. Z. LeGeros, G. Bonel and R. Legros, “Types of H2O in Human Enamel and in Precipitated Apatites,” Calcified Tissue Research, Vol. 26, No. 1, 1978, pp. 111-118. doi:10.1007/BF02013245

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.