Broad overview of oxidative stress and its complications in human health

Abstract

There is extensive literature dealing with toxicity and human health. A goodly portion puts focus on involvement of electron transfer, reactive oxygen species and oxidative stress involving body organs. There is evidence for prevention or amelioration by antioxidants. This is one mechanism which is part of a multifaceted mode of action. This review comprises an update of earlier literature.

Share and Cite:

Kovacic, P. and Somanathan, R. (2013) Broad overview of oxidative stress and its complications in human health. Open Journal of Preventive Medicine, 3, 32-41. doi: 10.4236/ojpm.2013.31005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kovacic, P. and Becvar L.E. (2000) Mode of action of anti-infective agents: Emphasis on oxidative stress and electron transfer. Current Pharmaceutical Design, 6, 143-167. doi:10.2174/1381612810006020143
[2] Kovacic, P. and Osuna J.A. (2000) Mechanisms of anti-cancer agents: Emphasis on oxidative stress and electron transfer. Current Pharma-ceutical Design, 6, 277-309. doi:10.2174/1381612003401046
[3] Kovacic, P. (2007) Unifying mechanism for anticancer agents involving electron transfer and oxidative stress: Clinical implications. Medical Hypotheses, 69, 510-516. doi:10.1016/j.mehy.2006.08.046
[4] Kovacic, P. and Jacintho, J.D. (2001) Mechanism of carcinogenesis: Focus on oxidative stress and electron transfer. Current medicinal chemistry, 8, 773-796. doi:10.2174/0929867013373084
[5] Kovacic, P. and Somanathan, R. (2008) Unifying mechanism for eye toxicity: Electron transfer, reactive oxygen species, antioxidant benefits, cell signaling and cell membranes. Cell Membranes and Free Radical Research, 1, 56-69 (and references there-in).
[6] Kovacic, P. and Somanathan, R. (2012) Redox process in neurodegerative disease involving reactive oxygen species. Current Neuropharmacology, 10, in Press.
[7] Halliwell, B. (2006) Oxidative stress and neurodegeneration: Where are we now? Journal of Neurochemistry, 97, 1634-1658. doi:10.1111/j.1471-4159.2006.03907.x
[8] Robert, R., Smith, R.A., Safe, S., Szabo, C., Tjalkens, R. B. and Robertson, F.M. (2010) Toxicological and pathphysiological roles of reactive oxygen and nitrogen species. Toxicology, 276, 85-94. doi:10.1016/j.tox.2010.07.009
[9] Kovacic, P. (2006) Novel electrochemical approach to enhanced toxicitry of 4-oxo-2-nonenal vs. 4-hydroxy-2-nonenal (role of imine): Oxidative stress and therapeutic modalities. Medical Hypotheses, 67, 151-156. doi:10.1016/j.mehy.2005.10.034
[10] Min, K.J., Yang, M.S., Kim, S.U. and Joe, E.H. (2006) Astrocytes induce hemeoxyge-nase-1 expression in microglia: A feasible mechanism for preventing excessive brain inflammation. The Journal of Neuroscience, 26, 1880-1887. doi:10.1523/JNEUROSCI.3696-05.2006
[11] Chiu, D.T., van den Berg, J., Kuypers, F.A., Hung, I.-J., Wei, J.-S. and Liu, T.-Z. (1996)Correlation of membrane lipid peroxidation with oxidation of hemoglobin variants: Possibly related to the rates of hemin release. Free Radical Biology & Medicine, 21, 89-95. doi:10.1016/0891-5849(96)00035-4
[12] Kovacic, P. and Somanathan, R. (2012) Nervous about developments in electron transfer-ROS-oxidative stress: mechanisms of neurotoxicity? In: Laher, J, Ed., Systems Biology of Free Radicals and Antioxidants, Springer Verlag, New York, in Press.
[13] Kovacic, P. and Somanathan, R. (2005) Neurotoxicity: the broad framework of electron transfer, oxidative stress and protection by antioxidants. Current Medicinal Chemistry—Central Nervous System Agents, 5, 249-258. doi:10.2174/156801505774913044
[14] Jacintho, J.D. and Kovacic, P. (2003) Neurotransmission and neurotoxicity by nitric oxide, catecholamines, and glutamate: Unifying themes of reactive oxygen species and electron transfer. Current Medicinal Chemistry, 10, 2693-2703. doi:10.2174/0929867033456404
[15] Kell, D.B. (2010) Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s. prions, bactericides, chemical toxicology and others as examples. Archives of Toxicology, 84, 825-889. doi:10.1007/s00204-010-0577-x
[16] Kovacic, P. and Somanathan, R. (2009) Pulmonary toxicity and environmental con-tamination: Radicals, electron transfer, and protection by anti-oxidants. Reviews of Environmental Contamination and Toxi-cology, 201, 41-69. doi:10.1007/978-1-4419-0032-6_2
[17] Halliwell, B. and Gutteridge, J.M.C. (1999) Free Radicals in Biology and Medicine. Oxford University Press, New York, 1-897.
[18] Mach, W.J., Thimmesch, A.R., Pierce, J.T. and Pierce, J.D. (2011) Consequence of hyperoxia and the toxicity of oxygen in the lung. Nursing Research and Practice, 2011, Article ID: 260482, 7 Pages. doi:10.1155/2011/260482
[19] Kovacic, P. and Somanathan, R. (2010) Biomechanisms of nanoparticles (toxicants, antioxidants and therapeutics): Electron transfer and reactive oxygen species. Journal of Nanoscience and Nanotechnology, 10, 1-12. doi:10.1166/jnn.2010.3028
[20] Jia’en Li, J., Muralikrishnan, S., Ng, C.-T., Yung, L.Y.L. and Bay, B.-H. (2010) Nanopar-ticle-induced pulmonary toxicity. Experimental Biology and Medicine, 235, 1025-1033. doi:10.1258/ebm.2010.010021
[21] Sohaebuddin, S.K., The-venot, P., Baker, D., Eaton, J.W. and Tang, L. (2012) Nanoma-terial cytotoxicity is composition, size, and cell type dependent. Particle and Fibre Toxicology, 7, 1-17.
[22] Frick, R., Müller-Edenborn, B., Sclicker, A., Rothen-Rutishauser, B., Raemy, D.O., Günther, D., Hattendorf, B., Stark, W. and Beck-Schimmer, B. (2011) Comparison of manganese oxide nanoparticles and manganese sulfate with regard to oxidative stress, uptake and apoptosis in alveolar epithelial cells. Toxi-cology Letters, 205, 163-172. doi:10.1016/j.toxlet.2011.05.1037
[23] Fahmy, B. and Cormier, S.A. (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology in Vitro, 23, 1365-1371. doi:10.1016/j.tiv.2009.08.005
[24] Zhang, H., Ji, Z., Xia, T., Meng, H., Low-Kam, C., Liu, R., Pokhrel, S., Lin, S., Wang, X., Liao, Y.-P., Wang, M., Li, L., Rallo, R., Damoiseaux, R., Telesca, D., M?dler, L., Cohen, Y., Zink, J. I. and Nel, A.E. (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano, 6, 4349-4368. doi:10.1021/nn3010087
[25] Vanderbriel, R.J. and De Jong, W.H. (2012) A review of mammalian toxicity of ZnO nanopar-ticles. Journal of Nanotechnology, Science and Applications, 5, 61-71. doi:10.2147/NSA.S23932
[26] Shinde S.K., Grampurohit, N.D., Gaikwad, D.D., Jadhav, S.L., Gadhave, M.V. and Shelke, P.K. (2012) Toxicity induced by nanoparticles. Asian Pacific Journal of Tropical Disease, 2, 331-334. doi:10.1016/S2222-1808(12)60072-3
[27] He, X., Young, S.H., Schwegler-Berry, D., Chisholm, W.P., Fernback, J.E. and Ma, Q. (2011) Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibrob-last-to-myofibroblast transformation. Chemical Research in Toxicology, 24, 2237-2248. doi:10.1021/tx200351d
[28] Chen, B., Liu, Y., Song, W.M., Hayashi, Y., Ding, X.C. and Li, W.H. (2011) In vitro evaluation of cytotoxicity and oxidative stress induced by multiwalled carbon nanotubes in murine RAW 264.7 macrophages and human A549 lung cells. Biomedical and Environmental Sciences, 24, 593-601.
[29] Harvilchuck, J.A., Pu, X., Klaunig, J.E. and Carlson, G.P. (2009) Indicators of oxidative stress and apoptosis in mouse whole lung and Clara cells following exposure to styrene and its metabolites. Tox-icology, 264, 171-178. doi:10.1016/j.tox.2009.08.001
[30] Meszka-Jordan, A., Mah-lapuu, R., Soomets, U. and Carlson, G. P. (2009) Oxidative stress due to (R)-styrene oxide exposure and the role of anti-oxidants in non-Swiss albino (NSA) mice. Journal of Toxicol-ogy and Environmental Health, Part A, 72, 642-650. doi:10.1080/15287390902769436
[31] M?rbt, N., Tomm, J., Feltens, R., M?gel, I., Kalkhof, S., Murugesan, K., Wirth, H., Vogt, C., Binder, H., Lehmann, I. and von Bergen, M. (2011) Chlorinated benzenes cause concomitantly oxidative stress and induction of apoptotic markers in lung epithelial cells (A549) at non-acute toxic concentrations. Journal of Proteome Research, 10, 363-378. doi:10.1021/pr1005718
[32] Gould, N.S., White, C.W. and Day, B.J. (2009) A role for mitochondrial oxidative stress in sulfur mustard analog 2-chloroethyl ethyl sul-fide-induced lung injury and anti-oxidant protection. Journal of Pharmacology and Experimental Therapeutics, 328, 732-739. doi:10.1124/jpet.108.145037
[33] Choi, Y.H. and Park, H.S. (2012) Apoptosis induction of U937 human leukemia cells by diallyl trisulfide induces through generation of reactive oxygen species. Journal of Biomedical Science, 19, 50. doi:10.1186/1423-0127-19-50
[34] Pylkk?nen, L., Stock-mann-Javala, H., Alenius, H., Husgafvel-Pursiainen, K. and Savolainen, K. (2009) Wood dusts induce the production of reactive oxygen species and caspase-3 activity in human bron-chial epithelial cells. Toxicology, 262, 265-270. doi:10.1016/j.tox.2009.06.019
[35] Kovacic, P. and Somana-than, R. (2010) Dermal toxicity and environmental contamination: Electron transfer, reactive oxygen species, oxidative stress, cell signaling, and protection by antioxidants. Reviews of Environmental Contamination and Toxicology, 203, 119-138. doi:10.1007/978-1-4419-1352-4_4
[36] Tewari-Singh, N., Agarwal, C., Huang, J., Day, B.J., White, C.W. and Agarwal, R. (2011) Efficacy of glutathione in ameliorating sulfur mustard analog-induced toxicity in cultutred skin epidermal cells and in SKH-1 mouse skin in vivo. Journal of Pharmacology and Experimental Therapeutics, 336, 450-459. doi:10.1124/jpet.110.173708
[37] Tewari-Singh, N, Gu, M., Ahotriya, S., Gomnez, J., Agarwal, C., White, C.W. and Agarwal, R. (2011) Mechanisms of sulfur mustard analog 2-chloeroethyl ethyl sulfide-induced DNA damage in skin epidermal cells and fibroblasts. Free Radical Biology & Med-icine, 51, 2272-2280. doi:10.1016/j.freeradbiomed.2011.08.020
[38] Pal, A., Twa-ri-Singh, N., Gu, M., Agarwal, C., Huang, J., Day, B. J., White, C. W. and Agarwal, R. (2009) Sulfur mustard analog induces oxidative stress and activates signaling cascades in the skin of SKH-1 hairless mice. Free Radical Biology & Medicine, 47, 1640-1651. doi:10.1016/j.freeradbiomed.2009.09.011
[39] Son, Y.-O., Hitron, J.A., Wang, X., Chang, Q., Pan, J., Zhang, Z., Liu, J., Wang, S., Lee, J.-C. and Shi, X. (2010) Cr(IV) induces mito-chondrial-mediated and caspase-dependent apoptosis through reactive oxygen species-mediated p53 activation in JB6 C141 cells. Toxicology and Applied Pharmacology, 245, 226-235. doi:10.1016/j.taap.2010.03.004
[40] Murray, A.R., Kisin, E., Leonard, S.S., Young, S.H., Kommineni, C., Kagan, V.E., Castranova, V. and Shvedova, A.A. (2009) Oxidative stress and inflammatory response in dermal toxicity of single walled carbon nanotubes. Toxicology, 257, 161-171. doi:10.1016/j.tox.2008.12.023
[41] Nabeshi, H., Yoshikawa, T., Matsuyama, K., Nakazato, Y., Tochigi,S., Kondoh, S., Hirai, T., Akase, T., Nagano, K., Abe, Y., Yoshioka, Y., Kamada, H., Itoh, N., Tsunoda, S.-I, and Tsutsumi, Y. (2011) Amorphous nanosi-lica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Particle and Fibre Toxicology, 8, 1. doi:10.1186/1743-8977-8-1
[42] Daraei, B., Pourahmad, J., Hamidi-Pour, N., Hosseneini, M.-J., Shaki, F. and Solleimani, M. (2012) Uranyl acetate induces oxidative stress and mi-tochondrial membrane potential collapse in the human dermal fibroblast primary cells. Iranian Pharmaceutical Research, 11, 495-501.
[43] Terao, J., Minami, Y. and Bando, N. (2011) Singlet molecular oxygen-quenching activity of carotenoids: Relevance to protection of the skin from photoaging. Journal of Clinical Biochemistry and Nutrition, 48, 57-62. doi:10.3164/jcbn.11-008FR
[44] White, P.O., Tribout, H. and Baron, E. (2012) Protective mechanisms of green tea polyphe-nols in skin. Oxidative Medicine and Cellular Longevity, 2012, Article ID: 560682, 8 Pages. doi:10.1155/2012/560682
[45] Ascenso, A., Ribeiro, H.M., Marques, H.C. and Simoes, S. (2011) Topical delivery of anti-oxidants. Current Drug Delivery, 8, 640-660. doi:10.2174/156720111797635487
[46] Ozbek, E. (2012) Induction of oxidative stress in kidney. International Journal of Nephrology, 2012, Article ID: 465897, 9 Pages. doi:10.1155/2012/465897
[47] Ramatillah, D.L., Gillani, S.W. and Suardi, M. (2012) Effect of cytotoxic medications (MTX, cisplatin, 5-FU and cyclophosphamide) against creatinine clearance. Patient relationships and creatinine clearance urea with cancer patients. International Journal of Pharmacy Education, 3, 240-244.
[48] Deavall, D.G., Mertin, E.A., Horner, J.M. and Roberts, R. (2012) Drug-induced oxidative stress and toxicity. Journal of Toxicology, 2012, Article ID: 645460, 13 Pages. doi:10.1155/2012/645460
[49] Yao, X., Panichpisal, K., Kurtzman, N. and Nugent, K. (2007) Cisplatin nephrotoxicity; a review. The American Journal of the Medical Sciences, 334, 115-124. doi:10.1097/MAJ.0b013e31812dfe1e
[50] Pourahmad, J., Hosseini M.J., Eskandari, M.R., Shekarabi, S.M. and Daraei, B. (2010) Mitochondrial/lysosomal toxic cross-talk plays a key role in cisplatin nephrotoxicity. Xenobiotica, 40, 763-771. doi:10.3109/00498254.2010.512093
[51] Li, Y., Li, X., Wong, Y.S., Chen, T., Zhang, H., Liu, C. and Zheng, W. (2011) The reversal of cisplatin-induced nephrotoxicity by selenium nano-particles functionalized with 11-mercapto-1-undecanol by inhi-bition of ROS-mediated apoptosis. Biomaterials, 32, 9068-9076. doi:10.1016/j.biomaterials.2011.08.001
[52] El-Sayed, E.-S.M., Abd-Ellah, M.F. and Attia, S.Y.M. (2008) Protective effect of captopril against cisplatin-induced nephrotoxicity in rats. Pakistan Journal of Pharmaceutical Sciences, 21, 255-261.
[53] Pan, H., Mukhopadhyay, P., Rajesh, M., Patel, V., Mukhopadhyay, B., Gao, B., Kasko, G. and Pacher, P. (2009) Cannabidol attenuates cisplatin-induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death. Journal of Pharmacology and Experimental The-rapeutics, 328, 708-714. doi:10.1124/jpet.108.147181
[54] Denamur, S., Tyteca, D., Marchand-Brynaert, J., Van Bambeke, F., Tulkens, P. M. Cour-toy, P. J. and Mingeot-Leclercq, M-P. (2011) Role of oxidative stress in lysosomal membrane permeabilization and apoptosis induced by gentamicin, an aminoglycoside antibiotic. Free Radical Biology & Medicine, 51, 1656-1665. doi:10.1016/j.freeradbiomed.2011.07.015
[55] Randjelovic, P., Veljkovic, S., Stojiljkovic, N., Jankovic-Velickovic, L., Soko-lovic, D., Stoiljkovic, M. and Ilic, I. (2012) Salicylic acid atte-nuates gentamicin-induced nephrotoxicity in rats. The Scientific World Journal, 2012, Article ID: 390613, 6 Pages. doi:10.1100/2012/390613
[56] Hanly, L., Chen, N., Rieder, M. and Koren, G. (2009) Ifosfamide nephrotoxicity in children: A mechanistic base for pharmacological prevention. Expert Opi-nion on Drug Safety, 8, 155-168. doi:10.1517/14740330902808169
[57] O’Connell, S., Tuite, N., Slattery, C., Ryan, M.P. and Mc-Morrow, T. (2012) Cyc-losporin A-induced oxidative stress in human renal mesangial cells; a role for ERK MAPK signaling. Toxicological Sciences, 126, 101-113. doi:10.1093/toxsci/kfr330
[58] Durante, P., Romero, F., Pérez, M., Chávez, M. and Parra, G. (2010) Effect of uric acid on nephrotoxicity induced by mercuric chloride in rats. Toxicology and Industrial Health, 26, 163-174. doi:10.1177/0748233710362377
[59] Tarasub, N., Tarasub, C. and Ayutthaya, W.D.N. (2011) Protective role of curcumin on cadmium-induced nephrotoxicity in rats. Journal of Environ-mental Chemistry and Ecotoxicology, 3, 17-24.
[60] Yousef, J., Chen, G., Hill, P.A., Nation, R. L. and Li, J. (2011) Melatonin attenuates colistin-induced nephrotoxicity in rats. Antimicrobial Agents and Chemotherapy, 55, 4044-4049. doi:10.1128/AAC.00328-11
[61] Pujalté, I., Passagne, I., Brouillaud, B.L.,Tréguer, M., Durand, E., Ohayon-Courtés, C. and L’Azou, B. (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Particle and Fibre Toxicology, 8, 10. doi:10.1186/1743-8977-8-10
[62] Shafik, A., Khodeir, M.M. and Fadel, M.S. (2011) Animal study of anthracycline-induced cardiotoxicity and nephrotoxicity and evaluation of protective agents. Journal of Cancer Science & Therapy, 3, 96-103.
[63] Shi, R., Huang, C.-C., Aronstam, R.S., Ercal, N., Martin, A. and Huang, Y.-W. (2009) N-acetylcysteine amide decreases oxidative stress but not cell death induced by doxorubicin in H9c2 cardiomyocytes. BMC Pharmacology, 9, 7. doi:10.1186/1471-2210-9-7
[64] Aluise, C.D., St. Clair, D., Vore, M. and Butterfield, D.A. (2009) In vivo amelioration of adrinamycin induced oxidative stress in plasma by gamma-glutamylcysteine ethyl ester (GCEE). Cancer Letters, 282, 25-29. doi:10.1016/j.canlet.2009.02.047
[65] Sawyer, D.B., Peng, X., Chen, B., Pentassuglia, L. and Lim, C.C. (2010) Mechanisms of anthracycline cardiac injury: Can we identify strategies for cardio-protection? Progress in Cardiovascular Diseases, 53, 105-113. doi:10.1016/j.pcad.2010.06.007
[66] Ferreira, A.L.A., Matsubara, L.S. andMatsubara, B.B. (2008) Anthracycline-induced cardiotoxicity. Cardiovascular & Hematological Agents in Medicinal Chemistry, 6, 278-281. doi:10.2174/187152508785909474
[67] Vergely, C., Delemasure, S., Cottin, Y. and Rochette, L. (2007) Preventing the cardiotoxic effects of anthracyclines: From basic concepts to clinical data. Heart and Metabolism, 35, 1-7.
[68] James, H.D. (2012) Dexrazane for the prevention of cardiac toxicity and treatment of extravasation injury from the anthracycline antibiotic. Current Pharmaceutical Biotechnology, 13, 1949-1956. doi:10.2174/138920112802273245
[69] Ferroni, P., Della-Morte, D., Palmirotta, R., McClendon, M., Testa, G., Abete, P., Rengo, F., Rundek, T., Guadagni, F. and Roselli, M. (2011) Platinum-based compounds and risk for cardiovascular toxicity in the elderly: Role of the antioxidants in chemoprevention. Rejuvenation Research, 14, 293-308. doi:10.1089/rej.2010.1141
[70] Cheng, C.F., Juan, S.H., Chen, J.J., Chao, Y.C., Chen, H.H., Lian, W.S., Lu, C.Y., Chang, C.I., Chiu, T.H. and Lin, H. (2008) Pravatatin attenuates carboplatin-induced cardiotoxicity via inhibition of oxidative stress associated apoptosis. Apoptosis, 13, 883-894. doi:10.1007/s10495-008-0214-9
[71] Müller-Krebs, S., Kihm, L.P., Zeier, B., Gross, M.L., Wieslander, A., Haug, U., Zeier, M. and Schwenger, V. (2010) Glucose degradation products result in cardiovascular toxicity in a rat model of renal failure. Peritoneal Dialysis International, 30, 35-40. doi:10.3747/pdi.2009.00031
[72] Himmele, R., Sawin, D.-A. and Diaz-Buxo, J.A. (2011) GDPs and AGEs: Impact on cardiovascular toxicity in dialysis patients. Advances in Peritoneal Dialysis, 27, 22-26.
[73] Kovacic, P. and Somanathan, R. (2011) Cell signaling and receptors in toxicity of advanced glycation products (AGEs): α-dicarbonyl, radicals, oxidative stress and antioxidants. Journal of Receptors and Signal Transduction Research, 31, 332-339. doi:10.3109/10799893.2011.607171
[74] Fan, L., Sawbridge, D., George, V., Teng, L., Baily, A., Kitchen, I. and Li, J.-M. (2009) Chronic cocaine-induced cardiac oxidative stress and mitogen-activated protein kinase activation: The role of Nox2 oxidase. Journal of Pharmacology and Experimental Therapeutics, 328, 99-106. doi:10.1124/jpet.108.145201
[75] LeBlanc, A.J., Mosely, A.M., Chen, B.T., Frazer, D., Castranova, V. and Nurkiewicz, T.R. (2010) Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovascular Toxicology, 10, 27-36. doi:10.1007/s12012-009-9060-4
[76] Kin, J.B., Kim, C., Choi, E., Park, H., Pak, H.N., Lee, M. H., Shin, D.C., Hwang, K.C. and Joung, B. (2012) Par- ticulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation. Toxi- cology and Applied Pharmacology, 259, 66-73. doi:10.1016/j.taap.2011.12.007
[77] Alissa, E. and Ferns, G.A. (2011) Heavy metal poisoning and cardiovascular disease. Journal of Toxicology, 2011, Article ID: 870125, 21 Pages. doi:10.1155/2011/870125
[78] Azevedo, B.F., Furieri, L.B., Pe?anha, F.M., Wiggers, G.A., Vassallo, P.F., Sim?exs, M.R., Fiorim, J., de Batista, P., Fioresi, M., Rossoni, L., Stefanon, I., Alonso, M.J., Salaices, M. and Vassallo, D.V. (2012) Toxic effects of mercury on the cardiovascular and central nervous systems. Journal of Biomedicine and Biotechnology, 2012, Article ID: 949048. doi:10.1155/2012/949048
[79] Kovacic, P and Jacintho, J.D. (2001) Reproductive toxins: pervasive theme of oxidative stress and electron transfer. Current Medicinal Chemistry, 8, 863-892. doi:10.2174/0929867013372878
[80] Kovacic, P and Somanathan, R. (2006) Mechanism of teratogenesis: Electron transfer, reactive oxygen species and antioxidants. Birth Defects Research Part C, 78, 308-325. doi:10.1002/bdrc.20081
[81] Hansen, J.M. (2006) Oxidative stress as a mechanism of teratogenesis. Birth Defects Research Part C, 78, 293-307. doi:10.1002/bdrc.20085
[82] Oyagbemi, A.A., Adedara, I.A., Saba, A.B. and Farombi, E.O. (2010) Role of oxidative stress in reproductive toxicity induced by coadministration of chloroamphenicol and multivitamin-haematinics complex in rats. Basic & Clinical Pharmacology & Toxicology, 107, 103-108. doi:10.1111/j.1742-7843.2010.00561.x
[83] Ihsan, A., Wang, X., Liu, Z., Wang, Y., Huang, X., Liu, Y., Yu, H., Zhang, H., Li, T., Yang, C. and Yuan, Z. (2011) Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats. Toxicology and Applied Pharmacology, 252, 281-288. doi:10.1016/j.taap.2011.02.020
[84] Wang, N., Qian, H.Y., Zhou, X.Q., Li, X.Q. and Sun, Z.W. (2012) Mitochondrial energy metaboilism dysfunction involved in reproductive toxicity of mice caused by endosulfan and protective effects of vitamin E. Ecotoxicology and Environmental Safety, 82, 96-103. doi:10.1016/j.ecoenv.2012.05.014
[85] Amin, A., Abraham, C., Hamza, A.A., Abdalla, Z.A., Al-Shamsi, S.B., Harethi, S.S. and Daoud, S. (2012) A standardized extract of Ginkgo biloba neutralizes cisplatin-mediated reproductive toxicity in rats. Journal of Biomedicine and Biotechnology, 2012, Article ID: 362049, 11 Pages. doi:10.1155/2012/362049
[86] Ait H.N., Slimani, M., Merad-Boudia, B. and Zaoui, C. (2009) Reproductive toxicity of lead acetate in adult male rats. American Journal of Veterinary Research, 38-50.
[87] Subramanian, S., Rajendiran, G., Skhar, P., Gowri, C., Govindarajulu, P. and Aruldhas, M.M. (2006) Reproductive toxicity of chromium in adult bonnet monkeys (Macaca radiate Geoffrey) Reversible oxidative stress in the seman. Toxicology and Applied Pharmacology, 215, 237-249. doi:10.1016/j.taap.2006.03.004
[88] Hari, P. and Sreenivasula R.P. (2012) Effect of restraint stress on lead-induced male reproductive toxicity in rats. Journal of Experimental Zoology, 317A, 455-465. doi:10.1002/jez.1738
[89] Kaushal, N. and Bansal, M.P. (2009) Diminished reproductive potential of male mice in response to selenium-induced oxidative stress: Involvement of HSP70, HSP70-2, and MSJ-1. Journal of Biochemical and Molecular Toxicology, 23, 125-136. doi:10.1002/jbt.20276
[90] Borniquel, S., Valle, I., Cadenas, S., Lamas, S. and Monsalve, M. (2006) Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1α. The FASEB Journal, 20, E1216-E1227. doi:10.1096/fj.05-5189fje
[91] Chen, C.-H., Sun, L. and Mochly-Rosen, D. (2010) Mitochondrial aldehyde and dehydrogenase and cardiac diseases. Cardiovascular Research, 88, 51-57. doi:10.1093/cvr/cvq192
[92] Wang, J., Wang H., Hao, P., Xue, L., Wei, S., Zhang, Y. and Chen, Y. (2011) Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats. Molecular Medicine, 17, 172-179.
[93] Mariappan, N., Soorappan, R.N., Haque, M., Siramula, S. and Francis, J. (2007) TNF-α-induced mitochondrial oxidative stress and cardiac dysfunction: Restoration by superoxide dismutase mimetic Tempol. American Journal of Physiology—Heart and Circulatory, 293, H2726-H2737. doi:10.1152/ajpheart.00376.2007
[94] Montaigne, D., Hurt, C. and Neviere, R. (2012) Mitiochnodria death/survival signaling pathways in cardiotoxicity induced by anthracyclines and anticancer-targeted therapies. Biochemistry Research International, 2012, Article ID: 951539, 12 Pages. doi:10.1155/2012/951539
[95] Victor, V.M., Apostolova, N., Herance, R., Hernandez- Mijares, A. and Rocha, M. (2009) Oxidative stress and mitochondrial dysfunction in atherosclerosis: Mitochondria-targeted anitoxidants as potential therapy. Current Medicinal Chemistry, 16, 4654-4667. doi:10.2174/092986709789878265
[96] Aliev, G., Palacios, H.H., Gasimov, E., Oberenovich, M.E., Morales, L., Leszek, J., Bragin, V., Herrera, A.S. and Gokhman, D. (2010) Oxidative stress induced mitocondrial failure and vascular hyperfusion as key initiator for the development of Alzheimer’s disease. Pharmaceuticals, 3, 158-187. doi:10.3390/ph3010158
[97] Ferreiro, E., Balseiras, I., Ferreira, I.L., Costa, R.O., Rego, A.C., Pereira, C.F. and Oiliveira, C.R. (2012) Mitochon- drial- and endoplasmic reticulum-associated oxidative stress in Alzheimer’s disease: From pathogenesis to bio markers. International Journal of Cell Biology, 2012, Article ID: 735206, 23 Pages. doi:10.1155/2012/735206
[98] Cui, H., Kong, Y. and Zhang, H. (2012) Oxidative stress, mitochondrial dysfunction, and aging. Journal of Signal Transduction, 2012, Article ID: 646354, 13 Pages. doi:10.1155/2012/646354
[99] Lee, H.-C. and Wei, Y.-H. (2007) Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Experimental Biology and Medicine, 232, 592-606.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.