Tumorigenic Responses of Cancer-Associated Stromal Fibroblasts after Ablative Radiotherapy: A Transcriptome-Profiling Study

Abstract

Cancer-associated fibroblasts (CAFs) are key elements in the progression of cancer and thereby represent important targets for cancer therapies. Increased attention has been given to ablative radiotherapy in the clinics. Therefore, in this study we have aimed at identifying the transcriptional responses occurring in primary CAFs exposed to high-dose irradiation. Established primary CAFs obtained from non-small-cell lung cancer (NSCLC) patient material were irradiated with a single dose of 18 Gy and total RNA was isolated 24 hrs after treatment. Radiation-induced transcriptional alterations were investigated by gene expression analysis using genome-wide microarrays. Obtained results were verified by qRT-PCR of relevant genes. Confirmation of gene expression outcomes was achieved by diverse functional and expression assays including DNA damage response, measurements of reactive oxygen species (ROS) by flow cytometry and senescence-associated β-galactosidase. Irradiation resulted in differential expression of 680 genes of which 557 were up- and 127 down-regulated. Of those, 153 genes were differentially expressed with a fold-change greater than 1.0 and an adjusted p-value less than 0.05 across different comparisons (non-irradiated vs. irradiated). Expression patterns revealed profound changes in biological functions and processes involved in DNA repair, apoptosis, p53 pathway, autophagy, senescence, ROS production and immune response. CAFs display pro- and anti-tumorigenic effects after having received a single high-dose radiation. The measured effects will have an impact on the tumor microenvironment in respect to tumor growth and metastasis.

Share and Cite:

I. Martinez-Zubiaurre, C. Fenton, H. Taman, I. Pettersen, T. Hellevik and R. Paulssen, "Tumorigenic Responses of Cancer-Associated Stromal Fibroblasts after Ablative Radiotherapy: A Transcriptome-Profiling Study," Journal of Cancer Therapy, Vol. 4 No. 1, 2013, pp. 208-250. doi: 10.4236/jct.2013.41031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. H. Heinzerling, B. Kavanagh and R. D. Timmerman, “Stereotactic Ablative Radiation Therapy for Primary Lung Tumors,” Cancer Journal, Vol. 17, No. 1, 2011, pp. 28-32. doi:10.1097%2FPPO.0b013e31820a7f80
[2] D. Palma and S. Senan, “Stereotactic Radiation Therapy: Changing Treatment Paradigms for Stage I Non Small Cell Lung Cancer,” Current Opinion in Oncology, Vol. 23, No. 2, 2011, pp. 133-139. doi:10.1097%2FCCO.0b013e328341ee11
[3] B. D. Kavanagh, M. Miften and R. A. Rabinovitch, “Advances in Treatment Techniques: Stereotactic Body Radiation Therapy and the Spread of Hypofractionation,” Cancer Journal, Vol. 17, No. 3, 2011, pp. 177-181. doi:10.1097%2FPPO.0b013e31821f7dbd
[4] T. B. Lanni Jr., I. S. Grills, L. L. Kestin and J. M. Robertson, “Stereotactic Radiotherapy Reduces Treatment Cost while Improving Overall Survival and Local Control over Standard Fractionated Radiation Therapy for Medically Inoperable Non-Small-Cell Lung Cancer,” American Journal of Clinical Oncology, Vol. 34, No. 5, 2011, pp. 494-498. doi:10.1097%2FCOC.0b013e3181ec63ae
[5] M. P. Lisanti, U. E. Martinez-Outschoorn, B. Chiavarina, S. Pavlides, D. Whitaker-Menezes, A. Tsirigos, A. Witkiewicz, Z. Lin, R. Balliet, A. Howell and F. Sotgia, “Understanding the “Lethal” Drivers of Tumor-Stroma Co-Evolution: Emerging Role(s) for Hypoxia, Oxidative Stress and Autophagy/Mitophagy in the Tumor Micro-Environment,” Cancer Biology and Therapy, Vol. 10, No. 6, 2010, pp. 537-542. doi:10.4161%2Fcbt.10.6.13370
[6] K. Pietras and A. Ostman, “Hallmarks of Cancer: Interactions with the Tumor Stroma,” Experimental Cell Research, Vol. 316, No. 8, 2010, pp. 1324-1331. doi:10.1016%2Fj.yexcr.2010.02.045
[7] M. Allen and J. L. Jones, “Jekyll and Hyde: The Role of the Microenvironment on the Progression of Cancer,” The Journal of Pathology, Vol. 223, No. 2, 2011, pp. 162-176.
[8] K. Rasanen and A. Vaheri, “Activation of Fibroblasts in Cancer Stroma,” Experimental Cell Research, Vol. 316, No.17, 2010, pp. 2713-2722. doi:10.1016%2Fj.yexcr.2010.04.032
[9] E. Kis, T. Szatmari, M. Keszei, R. Farkas, O. Esik, K. Lumniczky, A. Falus and G. Safrany, “Microarray Analysis of Radiation Response Genes in Primary Human Fibroblasts,” International Journal of Radiation Oncology, Biology, Physics, Vol. 66, No. 5, 2006, pp. 1506-1514. doi:10.1016%2Fj.ijrobp.2006.08.004
[10] S. Tachiiri, T. Katagiri, T. Tsunoda, N. Oya, M. Hiraoka and Y. Nakamura, “Analysis of Gene-Expression Profiles after Gamma Irradiation of Normal Human Fibroblasts,” International Journal of Radiation Oncology, Biology, Physics, Vol. 64, No.1, 2006, pp. 272-279. doi:org/10.1016%2Fj.ijrobp.2005.08.030
[11] O. K. Rodningen, J. Overgaard, J. Alsner, T. Hastie and A. L. Borresen-Dale, “Microarray Analysis of the Transcriptional Response to Single or Multiple Doses of Ionizing Radiation in Human Subcutaneous Fibroblasts,” Radiotherapy and Oncology, Vol. 77, No. 3, 2005, pp. 231-240. doi:10.1186%2Fbcr1151
[12] H. Landmark, S. A. Nahas, J. Aaroe, R. Gatti, A. L. Borresen-Dale and O. K. Rodningen, “Transcriptional Response to Ionizing Radiation in Human Radiation Sensitive Cell Lines,” Radiotherapy and Oncology, Vol. 83, No. 3, 2007, pp. 256-260.
[13] O. K. Rodningen, A. L. Borresen-Dale, J. Alsner, T. Hastie and J. overgaard, “Radiation-Induced Gene Expression in Human Subcutaneous Fibroblasts is Predictive of Radiation-Induced Fibrosis,” Radiotherapy and Oncology, Vol. 86, No. 3, 2008, pp. 314-320. doi:10.1016%2Fj.radonc.2007.09.013
[14] T. Hellevik, I. Pettersen, V. Berg, J. O. Winberg, B. T. Moe, K. Bartnes, R. H. Paulssen, L. T. Busund, R. Bremnes, A. Chalmers and I. Martinez-Zubiaurre, “Cancer-Associated Fibroblasts from Human NSCLC Survive Ablative Doses of Radiation but Their Invasive Capacity is Reduced,” Radiation Oncology, Vol. 7, No. 1, 2012, pp. 59-71. doi:10.1186%2F1748-717X-7-59
[15] S. Stathakis, J. S. Li, K. Paskalev, J. Yang, L. Wang and C. M. Ma, “Ultra-Thin TLDs for Skin Dose Determination in High Energy Photon Beams,” Physics in Medicine and Biology, Vol. 51, No. 14, 2006, pp. 3549-3567. doi:10.1088%2F0031-9155%2F51%2F14%2F018
[16] T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods, Vol. 65, No. 1-2, 1983, pp. 55-63. doi:10.1016%2F0022-1759%2883%2990303-4
[17] R. H. Paulssen, L. Olsen and T. C. Sogn, “MagNa Pure Compact RNA Isolation kit: Isolation of High-Quality Total RNA from a Broad Range of Sample Material,” Biochemica, Vol. 2, 2006, pp. 14-16.
[18] B. M. Bolstad, R. A. Irizarry, M. Astrand and T. P. Speed, “A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Variance and Bias,” Bioinformatics, Vol. 19, No. 2, 2003, pp. 185-193. doi:10.1093%2Fbioinformatics%2F19.2.185
[19] G. K. Smyth, “Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments,” Statistical Applications in Genetics and Molecular Biology, Vol. 3, No. 1, 2004, pp. 1544-6115. doi:10.2202%2F1544-6115.1027
[20] Y. Benjamini and D. Yekutieli, “False Discovery Rate-Adjusted Multiple Confidence Intervals for Selected Parameters,” Journal of the American Statistical Association, Vol. 100, No. 469, 2005, pp. 71-81. doi:10.1198%2F016214504000001907
[21] L. Gidskehaug, H. Stodkilde-Jorgensen, M. Martens and H. Martens, “Bridge-PLS Regression: Two-Block Bilinear Regression without Deflation,” Journal of Chemometrics, Vol. 18, No. 3-4, 2004, pp. 208-215. doi:10.1002%2Fcem.862
[22] K. J. Livak and T. D. Schmittgen, “Analysis of Relative Gene Expression Data using Real-Time Quantitative PCR and The 2(-Delta Delta C(T)) Method,” Methods, Vol. 25, No. 4, 2001, pp. 402-408.
[23] G. Li and D. Reinberg, “Chromatin Higher-Order Structures and Gene Regulation,” Current Opinion in Genetics & Development, Vol. 21, No. 2, 2011, pp. 175-186. doi:10.1016%2Fj.gde.2011.01.022
[24] A. Krtolica, S. Parrinello, S. Lockett, P. Y. Desprez and J. Campisi, “Senescent Fibroblasts Promote Epithelial Cell Growth and Tumorigenesis: A Link Between Cancer and Aging,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 21, 2001, pp. 12072-12077. doi:10.1073%2Fpnas.211053698
[25] J. L. Wang and P. C. Wang, “The Effect of Aging on the DNA Damage and Repair Capacity in 2BS Cells Undergoing Oxidative Stress,” Molecular Biology Reports, Vol. 39, No. 1, 2012, pp. 233-241. doi:10.1007%2Fs11033-011-0731-4
[26] C. Bavik, I. Coleman, J. P. Dean, B. Knudsen, S. Plymate and P. S. Nelson, “The Gene Expression Program of Prostate Fibroblast Senescence Modulates Neoplastic Epithelial Cell Proliferation through Paracrine Mechanisms,” Cancer Research, Vol. 66, No. 2, 2006, pp. 794-802. doi:10.1158%2F0008-5472.CAN-05-1716
[27] T. B. Kryston, A. B. Georgiev, P. Pissis and A. G. Georgakilas, “Role of Oxidative Stress and DNA Damage in Human Carcinogenesis,” Mutation Research, Vol. 711, No. 1-2, 2011, pp. 193-201. doi:10.1016%2Fj.mrfmmm.2010.12.016
[28] P. L. Miliani de Marval and Y. Zhang, “The RP-Mdm2-p53 Pathway and Tumorigenesis,” Oncotarget, Vol. 2, No. 3, 2011, pp. 234-238.
[29] J. J. Manfredi, “The Mdm2-p53 Relationship Evolves: Mdm2 Swings Both Ways as an Oncogene and a Tumor Suppressor,” Genes & Development, Vol. 24, No. 15, 2010, pp. 1580-1589. doi:10.1101%2Fgad.1941710
[30] L. C. Harris, “MDM2 Splice Variants and Their Therapeutic Implications,” Current Cancer Drug Targets, Vol. 5, No. 1, 2005, pp. 21-26. doi:10.2174%2F1568009053332654
[31] K. Ogawa, S. Murayama and M. Mori, “Predicting the Tumor Response to Radiotherapy Using Microarray Analysis,” Oncology Reports, Vol. 18, No. 5, 2007, pp. 1243-1248.
[32] W. F. Guo, R. X. Lin, J. Huang, Z. Zhou, J. Yang, G. Z. Guo and S. Q. Wang, “Identification of Differentially Expressed Genes Contributing to Radioresistance in Lung Cancer Cells Using Microarray Analysis,” Radiation Research, Vol. 164, No. 1, 2005, pp. 27-35. doi:10.1667%2FRR3401
[33] U. E. Martinez-Outschoorn, S. Pavlides, A. Howell, R. G. Pestell, H. B. Tanowitz, F. Sotgia and M. P. Lisanti, “Stromal-Epithelial Metabolic Coupling in Cancer: Integrating Autophagy and Metabolism in the Tumor Microenvironment,” The International Journal of Biochemistry & Cell Biology, Vol. 43, No. 7, 2011, pp. 1045-1051. doi:10.1016%2Fj.biocel.2011.01.023
[34] H. Chaachouay, P. Ohneseit, M. Toulany, R. Kehlbach, G. Multhoff and H. P. Rodemann, “Autophagy Contributes to Resistance of Tumor Cells to Ionizing Radiation,” Radiotherapy and Oncology, Vol. 99, No. 3, 2011, pp. 287-292. doi:10.1016%2Fj.radonc.2011.06.002
[35] M. Ao, O. E. Franco, D. Park, D. Raman, K. Williams and S. W. Hayward, “Cross-Talk between Paracrine-Acting Cytokine and Chemokine Pathways Promotes Malignancy in Benign Human Prostatic Epithelium,” Cancer Research, Vol. 67, No. 9, 2007, pp. 4244-4253. doi:10.1158%2F0008-5472.CAN-06-3946
[36] R. F. Hwang, T. Moore, T. Arumugam, V. Ramachandran, K. D. Amos, A. Rivera, B. Ji, D. B. Evans and C. D. Logsdon, “Cancer-Associated Stromal Fibroblasts Promote Pancreatic Tumor Progression,” Cancer Research, Vol. 68, No. 3, 2008, pp. 918-926. doi:10.1158%2F0008-5472.CAN-07-5714
[37] A. D. Blann, K. S. Ramcharan, P. S. Stonelake, D. Luesley and G. Y. Lip, “The Angiome: A New Concept in Cancer Biology,” Journal of Clinical Pathology, Vol. 64, No. 7, 2011, pp. 637-643. doi:10.1136%2Fjcp.2011.088948
[38] J. M. Ko, P. L. Chan, W. L. Yau, H. K. Chan, K. C. Chan, Z. Y. Yu, F. M. Kwong, L. D. Miller, E. T. Liu, L. C. Yang, P. H. Lo, E. J. Stanbridge, J. C. Tang, G. Srivastava, S. W. Tsao, S. Law and M. L. Lung, “Mono-chromosome Transfer and Microarray Analysis Identify a Critical Tumor-Suppressive Region Mapping to Chromosome 13q14 and THSD1 in Esophageal Carcinoma,” Molecular Cancer Research, Vol. 6, No. 4, 2008, pp. 592-603. doi:10.1158%2F1541-7786.MCR-07-0154
[39] L. C. Armstrong and P. Bornstein, “Thrombospondins 1 and 2 Function as Inhibitors of Angiogenesis,” Matrix Biology, Vol. 22, No. 1, 2003, pp. 63-71. doi:10.1016%2FS0945-053X%2803%2900005-2
[40] P. Bornstein, “Thrombospondins Function as Regulators of Angiogenesis,” Journal of Cell Communication and Signaling, Vol. 3, No. 3-4, 2009, pp. 189-200. doi:10.1007%2Fs12079-009-0060-8
[41] F. de Fraipont, A. C. Nicholson, J. J. Feige and E. G. Van Meir, “Thrombospondins and Tumor Angiogenesis,” Trends in Molecular Medicine, Vol. 7, No. 9, 2001, pp. 401-407. doi:10.1016%2FS1471-4914%2801%2902102-5
[42] F. Cavallo, E. Quaglino, L. Cifaldi, E. Di Carlo, A. Andre, P. Bernabei, P. Musiani, G. Forni and R. A. Calogero, “Interleukin 12-Activated Lymphocytes Influence Tumor Genetic Programs,” Cancer Research, Vol. 61, No. 8, 2001, pp. 3518-3523.
[43] A. Sakurai, C. Doci and J. S. Gutkind, “Semaphorin Signaling in Angiogenesis, Lymphangiogenesis and Cancer,” Cell Research, Vol. 22, No. 1, 2012, pp. 23-32. doi:10.1038%2Fcr.2012.21
[44] T. Ito, M. Kagoshima, Y. Sasaki, C. Li, N. Udaka, T. Kitsukawa, H. Fujisawa, M. Taniguchi, T. Yagi, H. Kitamura and Y. Goshima, “Repulsive Axon Guidance Molecule Sema3A Inhibits Branching Morphogenesis of Fetal Mouse Lung,” Mechanisms of Development, Vol. 97, No. 1-2, 2000, pp. 35-45. doi:10.1016%2FS0925-4773%2800%2900401-9
[45] M. Kagoshima and T. Ito, “Diverse Gene Expression and Function of Semaphorins in Developing Lung: Positive and Negative Regulatory Roles of Semaphorins in Lung Branching Morphogenesis,” Genes to Cells: Devoted to Molecular and Cellular Mechanisms, Vol. 6, No. 6, 2001, pp. 559-571. doi:10.1046%2Fj.1365-2443.2001.00441.x
[46] V. A. Potiron, J. Roche and H. A. Drabkin, “Semaphorins and Their Receptors in Lung Cancer,” Cancer Letters, Vol. 273, No. 1, 2009, pp. 1-14. doi:10.1016%2Fj.canlet.2008.05.032
[47] D. Barberis, S. Artigiani, A. Casazza, S. Corso, S. Giordano, C. A. Love, E. Y. Jones, P. M. Comoglio and L. Tamagnone, “Plexin Signaling Hampers Integrin-Based Adhesion, Leading to Rho-Kinase Independent Cell Rounding, and Inhibiting Lamellipodia Extension and Cell Motility,” FASEB Journal, Vol. 18, No. 3, 2004, pp. 592-594.
[48] N. A. Bhowmick, E. G. Neilson and H. L. Moses, “Stromal Fibroblasts in Cancer Initiation and Progression,” Nature, Vol. 432, No. 7015, 2004, pp. 332-337. doi:10.1038%2Fnature03096
[49] M. Akdis, S. Burgler, R. Crameri, T. Eiwegger, H. Fujita, E. Gomez, S. Klunker, N. Meyer, L. O’Mahony, O. Palomares, C. Rhyner, N. Ouaked, A. Schaffartzik, W. Van De Veen, S. Zeller, M. Zimmermann and C. A. Akdis, “Interleukins, from 1 to 37, and Interferon-Gamma: Receptors, Functions, and Roles in Diseases,” The Journal of Allergy and Clinical Immunology, Vol. 127, No. 3, 2011, pp. 701-721. doi:10.1016%2Fj.jaci.2010.11.050
[50] R. Kalluri and M. Zeisberg, “Fibroblasts in Cancer,” Nature Reviews. Cancer, Vol. 6, No. 5, 2006, pp. 392-401. doi:10.1038%2Fnrc1877
[51] H. Nakagawa, S. Liyanarachchi, R. V. Davuluri, H. Auer, E. W. Martin Jr., A. de la Chapelle and W. L. Frankel, “Role of Cancer-Associated Stromal Fibroblasts in Metastatic Colon Cancer to the Liver and Their Expression Profiles,” Oncogene, Vol. 23, No. 44, 2004, pp. 7366-7377. doi:10.1038%2Fsj.onc.1208013
[52] A. Hurbin, L. Dubrez, J. L. Coll and M. C. Favrot, “Inhibition of Apoptosis by Amphiregulin via an Insulin-Like Growth Factor-1 Receptor-Dependent Pathway in Non-Small Cell Lung Cancer Cell Lines,” The Journal of Biological Chemistry, Vol. 277, No. 51, 2002, pp. 49127-49133. doi:10.1074%2Fjbc.M207584200
[53] H. Wang, V. Patel, H. Miyazaki, J. S. Gutkind and W. A. Yeudall, “Role for EPS8 in Squamous Carcinogenesis,” Carcinogenesis, Vol. 30, No. 1, 2009, pp. 165-174. doi:10.1016%2Fj.oos.2009.06.212
[54] J. A. Joyce and J. W. Pollard, “Microenvironmental Regulation of Metastasis,” Nature Reviews. Cancer, Vol. 9, No. 4, 2009, pp. 239-252.
[55] M. Liu, J. Xu and H. Deng, “Tangled Fibroblasts in Tumor-Stroma Interactions,” International Journal of Cancer, Vol. 129, No. 8, 2011, pp. 1795-1805. doi:10.1002%2Fijc.26116
[56] L. E. Littlepage, M. D. Sternlicht, N. Rougier, J. Phillips, E. Gallo, Y. Yu, K. Williams, A. Brenot, J. I. Gordon and Z. Werb, “Matrix Metalloproteinases Contribute Distinct Roles in Neuroendocrine Prostate Carcinogenesis, Metastasis, and Angiogenesis Progression,” Cancer Research, Vol. 70, No. 6, 2010, pp. 2224-2234. doi:10.1158%2F0008-5472.CAN-09-3515
[57] P. Basset, C. Wolf and P. Chambon, “Expression of the Stromelysin-3 Gene in Fibroblastic Cells of Invasive Carcinomas of the Breast and Other Human Tissues: A Review,” Breast Cancer Research and Treatment, Vol. 24, No. 3, 1993, pp. 185-193. doi:10.1007%2FBF01833259
[58] D. Peruzzi, F. Mori, A. Conforti, D. Lazzaro, E. De Rinaldis, G. Ciliberto, N. La Monica and L. Aurisicchio, “MMP11: A Novel Target Antigen for Cancer Immunoerapy,” Clinical Cancer Research , Vol. 15, No. 12, 2009, pp. 4104-4113. doi:10.1158%2F1078-0432.CCR-08-3226
[59] C. W. Cheng, J. C. Yu, H. W. Wang, C. S. Huang, J. C. Shieh, Y. P. Fu, C. W. Chang, P. E. Wu and C. Y. Shen, “The Clinical Implications of MMP-11 and CK-20 Expression in Human Breast Cancer,” Clinica Chimica Acta, Vol. 411, No. 3-4, 2010, pp. 234-241. doi:10.1016%2Fj.cca.2009.11.009
[60] Z. S. Zhao, Y. Q. Chu, Z. Y. Ye, Y. Y. Wang and H. Q. Tao, “Overexpression of Matrix Metalloproteinase 11 in Human Gastric Carcinoma and its Clinicopathologic Significance,” Human Pathology, Vol. 41, No. 5, 2010, pp. 686-696. doi:10.1016%2Fj.humpath.2009.10.010
[61] C. Fan, D. Sheu, H. Fan, K. Hsu, C. Allen Chang and E. Chan, “Down-Regulation of Matrix Gla Protein Messenger RNA in Human Colorectal Adenocarcinomas,” Cancer Letters, Vol. 165, No. 1, 2001, pp. 63-69. doi:10.1016%2FS0304-3835%2801%2900416-5
[62] K. Yoshimura, K. Takeuchi, K. Nagasaki, S. Ogishima, H. Tanaka, T. Iwase, F. Akiyama, Y. Kuroda and Y. Miki, “Prognostic Value of Matrix Gla Protein in Breast Cancer,” Molecular Medicine Reports, Vol. 2, No. 4, 2009, pp. 549-553. doi:10.3892%2Fmmr_00000135
[63] J. C. Montero, R. Rodriguez-Barrueco, A. Ocana, E. Diaz-Rodriguez, A. Esparis-Ogando and A. Pandiella, “Neuregulins and Cancer,” Clinical Cancer Research, Vol. 14, No. 11, 2008, pp. 3237-3241. doi:10.1158%2F1078-0432.CCR-07-5133
[64] N. V. Hayes and W. J. Gullick, “The Neuregulin Family of Genes and Their Multiple Splice Variants in Breast Cancer,” Journal of Mammary Gland Biology and Neoplasia, Vol. 13, No. 2, 2008, pp. 205-214. doi:10.1007%2Fs10911-008-9078-4
[65] H. Komiyama, A. Aoki, S. Tanaka, H. Maekawa, Y. Kato, R. Wada, T. Maekawa, M. Tamura and T. Shiroishi, “Alu-Derived Cis-Element Regulates Tumorigenesis-Dependent Gastric Expression of GASDERMIN B (GSDMB),” Genes & Genetic Systems, Vol. 85, No. 1, 2010, pp. 75-83. doi:10.1266%2Fggs.85.75

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.