Root Study: Why Is It behind Other Plant Studies?

Abstract

Until the 1980s, root studies were typically conducted in nutrient solution, because of the technical difficulties of studying roots in their natural environment, soil. Recent innovations and the realization that there are gaps between the expected and actual performance of plant root systems have emphasized the need for more realistic solutions. This review analyzes the study of plant roots in view of developments in soil science, microbiology, botany and plant physiology, and recently the introduction of molecular biology and computerized imaging.

Share and Cite:

M. Silberbush, "Root Study: Why Is It behind Other Plant Studies?," American Journal of Plant Sciences, Vol. 4 No. 2, 2013, pp. 198-203. doi: 10.4236/ajps.2013.42026.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Waisel, A. Eshel and U. Kafkafi, “Plant Roots—The Hidden Half,” 3rd Edition, Marcel Dekker Inc., New York, 2002.
[2] H. Hartman, “Photosynthesis and the Origin of Life,” Origins of Life and Evolution of Biospheres, Vol. 28, No. 4-6, 1998, pp. 515-521. http://www.ncbi.nlm.nih.gov/pubmed/11536891 doi:10.1023/A:1006548904157
[3] R. Dawkins, “The Selfish Gene,” Oxford University Press, Oxford, 1976.
[4] A. D. Barnabas, “Casparian Band-Like Structures in the Root Hypodermis of Some Aquatic Angiosperms,” Aquatic Botany, Vol. 55, No. 3, 1996, pp. 217-225. doi:10.1016/S0304-3770(96)01072-8
[5] J. A Raven and D. Edwards, “Roots: Evolutionary Origins and Biogeochemical Significance,” Journal of Experimental Botany, Vol. 52, Special Issue, 2001, pp. 381-401. doi:10.1093/jexbot/52.suppl_1.381
[6] A. L?uchli and U. Lüttge, “Salinity: Environment-Plants-Molecules,” Kluwer, Dordrecht, 2002.
[7] A. Shomerilan, A. Nissenbaum and Y. Waisel, “Photosynthetic Pathways and the Ecological Distribution of the Chenopodiaceae in Israel,” Oecologia, Vol. 48, No. 2, 1981, pp. 244-248. doi:10.1007/BF00347970
[8] R. Chambers, L. A. Meyerson and K. Saltonstall, “Expansion of Phragmites australis into Tidal Wetlands of North America,” Aquatic Botany, Vol. 64, No. 2, 1999, pp. 261-273. doi:10.1016/S0304-3770(99)00055-8
[9] T. Borsch, C. Loehne and J. Wiersema, “Phylogeny and Evolutionary Patterns in Nymphaeales: Integrating Genes, Genomes and Morphology,” 17th International Botanical Congress, Vienna, 17-23 July 2005, pp. 1052-1081.
[10] M. G. Huck, B. Klepper and H. M. Taylor, “Diurnal Variations in Root Diameter,” Plant Physiology, Vol. 45, No. 4, 1970, pp. 529-530. doi:10.1104/pp.45.4.529
[11] H. M. Taylor and B. Klepper, “Water Uptake by Cotton Root Systems: An Examination of Assumptions in the Single Root Model,” Soil Science, Vol. 120, No. 1, 1975, pp. 57-67. doi:10.1097/00010694-197507000-00009
[12] E. A. Waraich, R. Ahmad, Saifullah, M. Y. Ashraf and Ehsanullah , “Role of Mineral Nutrition in Alleviation of Drought Stress in Plants,” Australian Journal of Crop Science, Vol. 5, No. 6, 2011, pp. 764-777.
[13] P. S. Nobel and M. Cui, “Hydraulic Conductances of the Soil, the Root-Soil Air Gap, and the Root: Changes for Desert Succulents in Drying Soil,” Journal of Experimental Botany, Vol. 43, No. 248, 1992, pp. 319-326. doi:10.1093/jxb/43.3.319
[14] G. B. North and P. S. Nobel, “Drought Induced Changes in Soil Contact and Hydraulic Conductivity for Roots of Opuntia ficus indica with and without Rhizosheaths,” Plant and Soil, Vol. 191, No. 2, 1997, pp. 249-258. doi:10.1023/A:1004213728734
[15] M. E. McCully, “Roots in Soil: Unearthing the Complexities of Roots and Their Rhizospheres,” In: R. L. Jones, Ed., Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 50, Annual Reviews Inc., Palo Alto, 1999, pp. 695-718.
[16] A. Carminati, A. B. Moradi, D. Vetterlein, P. Vontobel, E. Lehmann, U. Weller, H. J. Vogel and S. E. Oswald, “Dynamics of Soil Water Content in the Rhizosphere,” Plant and Soil, Vol. 332, No. 1-2, 2010, pp. 163-176. doi:10.1007/s11104-010-0283-8
[17] E. Epstein and A. J. Bloom, “Mineral Nutrition of Plants: Principles and Prospectives,” 2nd Edition, Sinauer Associates, Inc., Sunderland, 2005.
[18] A. Jungk and N. Claassen, “Availability of Phosphate and Potassium as the Result of Interactions between Root and Soil in the Rhizosphere,” Zeitschrift für Pflanzenernahrung und Bodenkunde, Vol. 149, No. 4, 1986, pp. 411-427. doi:10.1002/jpln.19861490406
[19] S. A. Barber and J. H. Cushman, “Nitrogen Uptake Model for Agronomic Crops,” In: I. R. Iskandar, Ed., Modeling Wastewater Renovation-Land Treatment, Wiley-Interscience, New York, 1981, pp. 382-409.
[20] J. H. Cushman, “An Analytical Solution to Solute Transport near Root Surfaces for Low Initial Concentration. I. Equations Development,” Soil Science Society of America Journal, Vol. 43, No. 6, 1979, pp. 1087-1090.
[21] P. H. Nye and F. H. C. Marriott, “A Theoretical Study of the Distribution of Substances around Roots Resulting from Simultaneous Diffusion and Mass Flow,” Plant and Soil, Vol. 30, No. 3, 1969, pp. 459-472. doi:10.1007/BF01881971
[22] P. B. Tinker and P. H. Nye, “Solute Movement in the Rhizosphere,” 2nd Edition, Oxford University Press, Oxford, 2000.
[23] M. Silberbush and S. A. Barber, “Root Growth, Nutrient Uptake and Yield of Soybean Cultivars Grown in the Field,” Communications in Soil Science and Plant Analysis, Vol. 16, No. 1, 1984, pp. 119-127. doi:10.1080/00103628509367591
[24] P. J. Smethurst and N. B. Comerford, “Simulating Nutrient Uptake by Single or Competing and Contrasting Root Systems,” Soil Science Society of America Journal, Vol. 57, No. 5, 1993, pp. 1361-1367. doi:10.2136/sssaj1993.03615995005700050033x
[25] R. Ganmore-Neumann and U. Kafkafi, “Root Temperature and Percentage NO3-/NH4+ Effect on Tomato Development. II. Nutrients Composition of Tomato Plants,” Agronomy Journal, Vol. 72, No. 5, 1980, pp. 762-766. doi:10.2134/agronj1980.00021962007200050017x
[26] F. G. Viets, “Calcium and Other Polyvalent Cations as Accelerators of Ion Accumulation by Excised Barley Roots,” Plant Physiology, Vol. 19, 1944, pp. 466-480. doi:10.1104/pp.19.3.466
[27] J. Messiaen, N. D. Read, P. Van Cutsem and A. J. Trewavas, “Cell Wall Oligogalacturonides Increase Cytosolic Free Calcium in Carrot Protoplasts,” Journal of Cell Sciences, Vol. 104, No. 2, 1993, pp. 365-371.
[28] U. Yermiyahu, S. Nir, G. Ben-Hayyim, U. Kafkafi and T. B. Kinraide, “Root Elongation in Saline Solution Related to Calcium Binding to Root Cell Plasma Membranes,” Plant and Soil, Vol. 191, No. 1, 1997, pp. 67-76. doi:10.1023/A:1004241506347
[29] S. Czarnes, A. R. Dexter and F. Bartoli, “Wetting and Drying Cycles in the Maize Rhizosphere under Controlled Conditions. Mechanics of the Root-Adhering,” Plant and Soil, Vol. 221, No. 2, 2000, pp. 253-271. doi:10.1023/A:1004747323220
[30] U. S. Sadana and N. Claassen, “Manganese Dynamics in the Rhizosphere and Mn Uptake by Different Crops Evaluated by a Mechanistic Model,” Plant and Soil, Vol. 218, No. 1-2, 2000, pp. 233-238. doi:10.1023/A:1014964107614
[31] T. Roose and A. C. Fowler, “A Mathematical Model for Water and Nutrient Uptake by Plant Root Systems,” Journal of Theoretical Biology, Vol. 228, No. 2, 2004, pp. 173-184. doi:10.1016/j.jtbi.2003.12.013
[32] V. M. Dunbabin, S. McDermott and A. G. Bengough, “Upscaling from Rhizosphere to Whole Root System: Modelling the Effects of Phospholipid Surfactants on Water and Nutrient Uptake,” Plant and Soil, Vol. 283, No. 1-2, 2006, pp. 57-72. doi:10.1007/s11104-005-0866-y
[33] J. P. Lynch, “Roots of the Second Green Revolution (a Review),” Australian Journal of Botany, Vol. 55, No. 5, 2007, pp. 493-512. doi:10.1071/BT06118
[34] R. E. Haling, R. J. Simpson, R. A. Culvenor, H. Lambers and A. E. Richardson, “Field Application of a DNA-Based Assay to the Measurement of Roots of Perennial Grasses,” Plant and Soil, Vol. 358, No. 1-2, 2012, pp. 183-199. doi:10.1007/s11104-012-1405-2
[35] D. V. Badri and J. M. Vivanco, “Regulation and Function of Root Exudates,” Plant Cell and Environment, Vol. 32, No. 6, 2009, pp. 666-681. doi:10.1111/j.1365-3040.2009.01926.x
[36] P. J. Gregory, “Roots, Rhizosphere and Soil: The Route to a Better Understanding of Soil Science?” European Journal of Soil Science, Vol. 57, No. 1, 2006, pp. 2-12. doi:10.1111/j.1365-2389.2005.00778.x
[37] P. Marschner, D. Crowley and Z. Rengel, “Rhizosphere Interactions between Microorganisms and Plants Govern Iron and Phosphorus Acquisition along the Root Axis— Model and Research Methods,” Soil Biology and Biochemistry, Vol. 43, No. 5, 2011, pp. 883-894. doi:10.1016/j.soilbio.2011.01.005
[38] M. S. Lucash, D. M. Eissenstat, J. D. Joslin, K. J. McFarlane and R. D. Yanai, “Estimating Nutrient Uptake by Mature Tree Roots under Field Conditions: Challenges and Opportunities,” Trees Structure and Function, Vol. 21, No. 6, 2007, pp. 593-603. doi:10.1007/s00468-007-0160-0
[39] H. Kahiluoto, E. Ketoja and M. Vestberg, "Plant-Available P Supply Is Not the Main Factor Determining the Benefit from Arbuscular Mycorrhiza to Crop P Nutrition and Growth in Contrasting Cropping Systems,” Plant and Soil, Vol. 350, No. 1-2, 2012, pp. 85-98. doi:10.1007/s11104-011-0884-x
[40] S. R. Tracy, C. R. Black, J. A. Roberts and S. J. Mooney, “Soil Compaction: A Review of Past and Present Techniques for Investigating Effects on Root Growth,” Journal of the Science of Food and Agriculture, Vol. 91, No. 9, 2011, pp. 1528-1537. doi:10.1002/jsfa.4424
[41] I. De Smet, P. J. White, A. G. Bengough, L. Dupuy, B. Parizot, I. Casimiro, R. Heidstra, M. Laskowski, M. Lepetit, F. Hoch-holdinger, X. Draye, H. M. Zhang, M. R. Broadley, B. Peret, J. P. Hammond, H. Fukaki, S. Mooney, J. P. Lynch, P. Nacry, U. Schurr, L. Laplaze, P. Benfey, T. Beeckman and M. Bennett, “Analyzing Lateral Root Development: How to Move Forward?” Plant Cell, Vol. 24, No. 1, 2012, pp. 15-20. doi:10.1105/tpc.111.094292

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.