Decaying of Nitrogen Second Positive System by Addition of H2 Gas in Air DB Discharge

Abstract

Effects of addition of H2 gas in air DB discharge on its optical and electrical characteristics have been studied. Optical emission spectroscopy is used to investigate the effect of hydrogen admixing on the emission intensity of the nitrogen second positive systems (300 - 420 nm) and the relative population density of states. An obvious decaying of the emission intensity of the nitrogen second positive bands with the introduction of H2 has been observed. It has been concluded that quenching of the nitrogen excited state is the responsible reason of this decaying. Mechanisms of excitation and ionization processes of nitrogen molecules in this mixture have been studied. Processes which are responsible for the decaying of the population density of have been reported. Addition of H2 to air improves the electrical characteristics of the DB discharge. An abrupt increasing in the electron density, reached about thirty fold at H2 flow rate of 3 L/min, as a result of increasing the ionization processes has been reported. The breakdown voltage of the discharge decreased from 1.87 kV to about 1.25 kV by the addition of H2 at flow rate of 3 L/min.

Share and Cite:

D. El-Zeer, A. Samir, F. Elakshar and A. Garamoon, "Decaying of Nitrogen Second Positive System by Addition of H2 Gas in Air DB Discharge," Journal of Modern Physics, Vol. 4 No. 2, 2013, pp. 160-167. doi: 10.4236/jmp.2013.42022.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Bogaerts, “Hybrid Monte Carlo—Fluid model for studying the effects of nitrogen addition to argon glow discharges,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 64, No. 2, 2009, pp. 126-140. doi:10.1016/j.sab.2008.11.004
[2] S. V. Pancheshnyi, S. M. Starikovskaia and A. Yu. Starikovskii, “Collisional Deactivation of N2(C, v = 0, 1, 2, 3) States by N2, O2, H2 and H2O Molecules,” Chemical Physics, Vol. 262, No. 2-3, 2000, pp. 349-357. doi:10.1016/S0301-0104(00)00338-4
[3] N. N. Morgan, A. Samir, A. A. Garamoon and Al-Azhar Bull, Special Issue, 2009, pp. 83-93.
[4] S. J. Scott, C. C. Figgures and D. G. Dixon, “Dielectric Barrier Discharge Processing of Aerospace Materials,” Plasma Sources Scientific Technology, Vol. 13, No. 3, 2004, pp. 461-465.
[5] A. A. Garamoon, D. M. El-Zeer, A. A. El-Ghany, D. Ghoneem and F. El-Hossary, “The European Physical Journal Applied Physics,” The European Physical Journal Applied Physics, Vol. 53, No. 2, 2011, 6 p. doi:10.1051/epjap/2010100196
[6] S. V. Pancheshnyi, S. M. Starikovskaia and A. Yu. Starikovskii, “Influences of the Barrier Types and Arrangements on Dielectric Barrier Discharge Characteristics,” Chemical Physics Letters, Vol. 294, No. 2, 1998, pp 523- 527. doi:10.1016/S0009-2614(98)00879-3
[7] D. M. El-Zeer, N. Dawood, F. Elakshar and A. A. Garamoon, “The Influence of the Addition of Argon Gas to Air DB Discharge,” The European Physical Journal Applied Physics, Vol. 58, No. 3, 2012, 8 p. doi:10.1051/epjap/2012120022
[8] D. N. Shin, C. W. Park and J. W. Hahn, “Methane Conversion in Pulsed Corona Discharge Reactors,” Bulletin of the Korean Chemical Society, Vol. 21, No. 2, 2000, pp. 228-232
[9] R. Brandenburg, H.-E. Wagner, A. M. Morozov and K. V. Kozlov, “Axial and Radial Development of Microdischarges of Barrier Discharges in N2/O2 Mixtures at Atmospheric Pressure,” Journal of Physics D: Applied Physics, Vol. 38, No. 11, 2005, pp 1649-1657. doi:10.1088/0022-3727/38/11/003
[10] A. Gomez, L. Flores, C. Torres, P. G. Reyes, F. Castillo and H. Martinez, “Diagnostic Studies of N2-O2-AR Glow Discharge Mixture,” Poceedings of the 29th ICPIG, Cancun, 12-17 July 2009, pp. 284-287.
[11] Z. Machala, M. Janda, K. Hensel, I. Jedlovsky, L. Lestinska, V. Foltin, V. Martisovits and M. Morvova, “Emission Spectroscopy of Atmospheric Pressure Plasmas for Bio-Medical and Environmental Applications,” Journal of Molecular Spectroscopy, Vol. 243, No. 2, 2007, pp 194-201. doi:10.1016/j.jms.2007.03.001
[12] H. G. Kalyuzhna, D. S. Levko and A. I. Shchedrin, “The Influence of the Parameters of an Atmospheric Pressure Barrier Discharge in Air on the Plasma Kinetics,” Ukr Journal of Physics, Vol. 53, No. 10, 2008, pp. 957-961.
[13] M. Yousfi, N. Merbahi, J. P. Sarrette, O. Eichwald, A. Ricard, J. P. Gardou, O. Ducasse and M. Benhenni, “Biomedical Engineering—Frontiers and Challenges,” 2011.
[14] R. Brandenburg, V. A. Maiorov, Yu. B. Golubovskii, H.-E. Wagner, J. Behnke and J. F. Behnke, “Diffuse Barrier Discharges in Nitrogen with Small Admixtures of Oxygen: Discharge Mechanism and Transition to the Filamentary Regime,” Journal of Physics D: Applied Physics, Vol. 38, No. 13, 2005, pp. 2187-2197. doi:10.1088/0022-3727/38/13/017
[15] A. Starikovskiy and N. Aleksandrov, “Aeronautics and Astronautics,” 2011.
[16] Z. P. Lin and W. A. Aue, “Quenching and Enhancement of Aroyl Luminescence in Excited Nitrogen,” Analytical Chemistry, Vol. 72, No. 1, 2000, pp. 198-205.
[17] I. Iova, M. Bazavan and F. L. Iova, “Specific Excitation of Some Head Bands of N2 and N2+ Molecules in Cylindrical Hollow Cathode Electrical Discharge (HCED),” Romanian Reports in Physics, Vol. 35, No. 4, 2003, pp. 472-479.
[18] V. Yu. Bazhenov, A. V. Ryabtsev, I. A. Soloshenko, V. A. Khomich, V. V. Tsiolko, A. I. Shchedrin, A. I. Kuzmichev1, V. I. Kryzhanovsky1 and I. L. Mikhno, Ukr Journal of Physics, Vol. 48, No. 1, 2003.
[19] A. A. Garamoon and D. M. El-Zeer, “Atmospheric Pressure Glow Discharge Plasma in Air at Frequency 50,” Plasma Sources Scientific Technology, Vol. 18, No. 4, 2009, 8 p.
[20] NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/
[21] Q. S. Yu and H. K. Yasuda, “An Optical Emission Study on Expanding Low-Temperature Cascade Arc Plasmas,” Plasma Chemistry and Plasma Processing, Vol. 18, No. 4, 1998, pp. 461-485. doi:10.1023/A:1021807215831
[22] J. H. Kim, Y. H. Choi and Y. S. Hwang, “Electron Density and Temperature Measurement Method by Using Emission Spectroscopy in Atmospheric Pressure Non-Equilibrium Nitrogen Plasmas,” Physics of Plasmas, Vol. 13, No. 9, 2006, 7 p.
[23] M. Moravej, X. Yang, M. Barankin, J. Penelon, S. E. Babayan and R. F. Hicks, “Properties of an Atmospheric Pressure Radio-Frequency Argon and Nitrogen Plasma,” Plasma Sources Scientific Technology, Vol. 15, No. 2, 2006, pp. 204-210.
[24] Bolsig, Kinema Software, Washington St. Monument, CO 80132. http://www.siglo-kinema.com
[25] A. Von Engle, “Electric Plasma the Nature and Uses,” Tayler and Frances Ltd., London and New York, 1983.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.