Regulation of MUC5AC mucin production by the cell attachment dependent pathway involving integrin β1 in NCI-H292 human lung epithelial cells

Abstract

Mucus hypersecretion in airways is a common pathological change observed in chronic inflammatory diseases and asthma. We investigated the new role of cell attachment to the extracellular matrix (ECM) on the production of the airway mucus protein, MUC5AC mucin, in human airway epithelial cells, NCI-H292. MUC5AC levels of cells cultured on low adhesion plates were 10-fold higher than those of cells cultured on adhesion plates. Cells cultured on bovine serum albumin (BSA) coated plates, which produce low adhesion conditions, also induced the up-regulation of MUC5AC. Mucin staining by PAS and MUC5AC immunodetection confirmed that mucin proteins were overproduced under low adhesion conditions. The major adhesion molecule between cells and the ECM was integrins. A time-course experiment showed that the expression patterns of integrin β1 and MUC5AC protein were inversely proportional. The inhibition of integrin β1 induced an increase in MUC5AC production in cells cultured under adhesion conditions, but not under low adhesion conditions. These results suggested that cell attachment regulates MUC5AC production, which is up-regulated by low adhesion to the ECM, and MUC5AC production is inversely proportional to the function of integrin β1.

Share and Cite:

Iwashita, J. , Hongo, K. , Ito, Y. , Abe, T. and Murata, J. (2013) Regulation of MUC5AC mucin production by the cell attachment dependent pathway involving integrin β1 in NCI-H292 human lung epithelial cells. Advances in Biological Chemistry, 3, 1-10. doi: 10.4236/abc.2013.31001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Knowles, M.R. and Boucher, R.C. (2002) Mucus clearance as a primary innate defense mechanism for mammalian airways. The Journal of Clinical Investigation, 109, 571-577.
[2] Rose, M.C., Nickola, T.J. and Voynow, J.A. (2001) Air way mucus obstruction: Mucin glycoproteins, MUC gene regulation and goblet cell hyperplasia. American Journal of Respiratory Cell and Molecular Biology, 25, 533-537.
[3] Kaliner, M., Shelhamer, J.H., Borson, B., Nadel, J., Pa tow, C. and Marom, Z. (1986) Human respiratory mucus. The American Review of Respiratory Disease, 134, 612 621.
[4] Rose, M.C. and Voynow, J.A. (2006) Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiological Reviews, 86, 245-278. doi:10.1152/physrev.00010.2005
[5] Thai, P., Loukoianov, A., Wachi, S. and Wu, R. (2008) Regulation of airway mucingene expression. Annual Re view of Physiology, 70, 405-429. doi:10.1146/annurev.physiol.70.113006.100441
[6] Li, J.D. (2003) Exploitation of host epithelial signaling networks by respiratory bacterial pathogens. Journal of Pharmacological Sciences, 91, 1-7. doi:10.1254/jphs.91.1
[7] Fahy, J.V. and Dickey, B.F. (2010) Airway mucus function and dysfunction. The New England Journal of Medicine, 363, 2233-2247. doi:10.1056/NEJMra0910061
[8] Vestbo, J., Lange, P. and Hansen, E.F. (2002) Chronic obstructive pulmonary disease. World COPD Day 2002. Ugeskrift for Laeger, 164, 5510.
[9] Rose, M.C., Kaufman, B. and Martin, B.M. (1989) Proteolytic fragmentation and peptide mapping of human car boxyamidomethylated tracheobronchial mucin. The Journal of Biological Chemistry, 264, 8193-8199.
[10] Fahy, J.V. (2002) Goblet cell and mucingene abnormali ties in asthma. Chest, 122, 320S-326S.
[11] Thornton, D.J., Carlstedt, I., Howard, M., Devine, P.L., Price, M.R. and Sheehan, J.K. (1996) Respiratory mucins: Identification of core proteins and glycoforms. The Bio chemical Journal, 316, 967-975.
[12] Hoessli, D.C., Davidson, E.A., Schwarz, R.T. and Nasirud, D. (1996) Glycobiology of Plasmodium falciparum: An emerging area of research. Glycoconjugate Journal, 13, 1-3. doi:10.1007/BF01049673
[13] Ordonez, C.L., Khashayar, R., Wong, H.H., Ferrando, R., Wu, R., Hyde, D.M., Hotchkiss, J.A., Zhang, Y., No vikov, A., Dolganov, G. and Fahy, J.V. (2001) Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. American Journal of Respiratory and Critical Care Medicine, 163, 517-523.
[14] Zuhdi, A.M., Piazza, F.M., Selby, D.M., Letwin, N., Huang, L. and Rose, M.C. (2000) Muc-5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways. American Journal of Respiratory Cell and Molecular Biology, 22, 253-260.
[15] Smirnova, M.G., Guo, L., Birchall, J.P. and Pearson, J.P. (2003) LPS up-regulates mucin and cytokine mRNA ex pression and stimulates mucin and cytokine secretion in goblet cells. Cellular immunology, 221, 42-49. doi:10.1016/S0008-8749(03)00059-5
[16] Mohamed, F.B., Garcia-Verdugo, I., Medina, M., Balloy, V., Chignard, M., Ramphal, R. and Touqui, L. (2012) A crucial role of flagellin in the induction of airway mucus production by Pseudomonas aeruginosa. PLoS One, 7, e39888. doi:10.1371/journal.pone.0039888
[17] Kondo, M., Tamaoki, J., Takeyama, K., Nakata, J. and Nagai, A. (2002) Interleukin-13 induces goblet cell dif ferentiation in primary cell culture from Guinea pig tracheal epithelium. American Journal of Respiratory Cell and Molecular Biology, 27, 536-541.
[18] Kondo, M., Tamaoki, J., Takeyama, K., Isono, K., Ka watani, K., Izumo, T. and Nagai, A. (2006) Elimination of IL-13 reverses established goblet cell metaplasia into ciliated epithelia in airway epithelial cell culture. Aller gology International, 55, 329-336. doi:10.2332/allergolint.55.329
[19] Morcillo, E.J. and Cortijo, J. (2006) Mucus and MUC in asthma. Current Opinion in Pulmonary Medicine, 12, 1-6. doi:10.1097/01.mcp.0000198064.27586.37
[20] Thornton, D.J., Rousseau, K. and McGuckin, M.A. (2008) Structure and function of the polymeric mucins in air ways mucus. Annual Review of Physiology, 70, 459-486. doi:10.1146/annurev.physiol.70.113006.100702
[21] Iwashita, J., Sato, Y., Sugaya, H., Takahashi, N., Sasaki, H., Abe, T. (2003) mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunology and cell biology, 81, 275-282. doi:10.1046/j.1440-1711.2003.t01-1-01163.x
[22] Zhu, Z., Homer, R.J., Wang, Z., Chen, Q., Geba, G.P., Wang, J., Zhang, Y. and Elias, J.A. (1999) Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic ab normalities, and eotaxin production. The Journal of Clinical Investigation, 103, 779-788. doi:10.1172/JCI5909
[23] Fujisawa, T., Ide, K., Holtzman, M.J., Suda, T., Suzuki, K., Kuroishi, S., Chida, K. and Nakamura, H. (2008) In volvement of the p38 MAPK pathway in IL-13-induced mucous cell metaplasia in mouse tracheal epithelial cells. Respirology, 13, 191-202. doi:10.1111/j.1440-1843.2008.01237.x
[24] Tanabe, T., Fujimoto, K., Yasuo, M., Tsushima, K., Yo shida, K., Ise, H. and Yamaya, M. (2008) Modulation of mucus production by interleukin-13 receptor alpha2 in the human airway epithelium. Clinical and Experimental Allergy, 38, 122-134. doi:10.1111/j.1365-2222.2007.02871.x
[25] Li, J.D., Feng, W., Gallup, M., Kim, J.H., Gum, J., Kim, Y. and Basbaum, C. (1998) Activation of NF-kappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proceedings of the National Aca demy of Sciences of the United States of America, 95, 5718-5723. doi:10.1073/pnas.95.10.5718
[26] Yang, J., Li, Q., Zhou, X.D., Kolosov, V.P. and Perelman, J.M. (2011) Naringenin attenuates mucous hypersecretion by modulating reactive oxygen species production and inhibiting NF-kappaB activity via EGFR-PI3K-Akt/ERK MAPKinase signaling in human airway epithelial cells. Molecular and Cellular Biochemistry, 351, 29-40.
[27] Kim, S., Schein, A.J. and Nadel, J.A. (2005) E-cadherin promotes EGFR-mediated cell differentiation and MUC5AC mucin expression in cultured human airway epithelial cells. American Journal of Physiology—Lung Cellular and Molecular Physiology, 289, L1049-1060.
[28] Iwashita, J., Ose, K., Ito, H., Murata, J. and Abe, T. (2011) Inhibition of E-cadherin dependent cell-cell contact pro motes MUC5AC mucin production through the activation of epidermal growth factor receptors. Bioscience, Bio technology, and Biochemistry, 75, 688-693. doi:10.1271/bbb.100830
[29] Hynes, R.O. (2002) Integrins: Bidirectional, allosteric signaling machines. Cell, 110, 673-687. doi:10.1016/S0092-8674(02)00971-6
[30] Iwashita, J., Yamamoto, T., Sasaki, Y. and Abe, T. (2009) MUC5AC production is downregulated in NCI-H292 lung cancer cells cultured on type-IV collagen. Molecular and Cellular Biochemistry, 337, 65-75. doi:10.1007/s11010-009-0286-z
[31] Roche, W.R., Beasley, R., Williams, J.H. and Holgate, S.T. (1989) Subepithelial fibrosis in the bronchi of asthmatics. Lancet, 1, 520-524. doi:10.1016/S0140-6736(89)90067-6
[32] Altraja, A., Laitinen, A., Virtanen, I., Kampe, M., Si monsson, B.G., Karlsson, S.E., Hakansson, L., Venge, P., Sillastu, H. and Laitinen, L.A. (1996) Expression of laminins in the airways in various types of asthmatic pa tients: A morphometric study. American Journal of Respiratory Cell and Molecular Biology, 15, 482-488.
[33] Chakir, J., Laviolette, M., Boutet, M., Laliberte, R., Dube, J. and Boulet, L.P. (1996) Lower airways remodeling in nonasthmatic subjects with allergic rhinitis. Laboratory Investigation, 75, 735-744.
[34] Christie, P.E., Jonas, M., Tsai, C.H., Chi, E.Y. and Hen derson Jr., W.R. (2004) Increase in laminin expression in allergic airway remodelling and decrease by dexametha sone. The European Respiratory Journal, 24, 107-115. doi:10.1183/09031936.04.00013303
[35] Chung, K.F. (2000) Airway smooth muscle cells: Con tributing to and regulating airway mucosal inflammation? The European Respiratory Journal, 15, 961-968. doi:10.1034/j.1399-3003.2000.15e26.x
[36] Johnson, P.R. (2001) Role of human airway smooth muscle in altered extracellular matrix production in asthma. Clinical and Experimental Pharmacology & Physiology, 28, 233-236. doi:10.1046/j.1440-1681.2001.03426.x
[37] Massova, I., Kotra, L.P., Fridman, R. and Mobashery, S. (1998) Matrix metalloproteinases: Structures, evolution, and diversification. FASEB Journal, 12, 1075-1095.
[38] Mattos, W., Lim, S., Russell, R., Jatakanon, A., Chung, K. F. and Barnes, P.J. (2002) Matrix metalloproteinase-9 expression in asthma: Effect of asthma severity, allergen challenge, and inhaled corticosteroids. Chest, 122, 1543 1552. doi:10.1378/chest.122.5.1543
[39] Karakoc, G.B., Yukselen, A., Yilmaz, M., Altintas, D.U. and Kendirli, S.G. (2012) Exhaled breath condensate MMP-9 level and its relationship with asthma severity and interleukin-4/10 levels in children. Annals of Allergy, Asthma & Immunology, 108, 300-304. doi:10.1016/j.anai.2012.02.019
[40] Fujisawa, T., Velichko, S., Thai, P., Hung, L.Y., Huang, F. and Wu, R. (2009) Regulation of airway MUC5AC expression by IL-1beta and IL-17A: The NF-kappaB paradigm. Journal of Immunology, 183, 6236-6243. doi:10.4049/jimmunol.0900614
[41] Broide, D.H., Lawrence, T., Doherty, T., Cho, J.Y., Miller, M., McElwain, K., McElwain, S. and Karin, M. (2005) Allergen-induced peribronchial fibrosis and mucus production mediated by IkappaB kinase beta-dependent genes in airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 102, 17723-17728. doi:10.1073/pnas.0509235102
[42] Poynter, M.E., Cloots, R., van Woerkom, T., Butnor, K. J., Vacek, P., Taatjes, D.J., Irvin, C.G. and Janssen Heininger, Y.M. (2004) NF-kappa B activation in airways modulates allergic inflammation but not hyperre sponsiveness. Journal of Immunology, 173, 7003-7009.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.