Model Examination for the Effect of Treading Stress on Young Green Barley (Hordeum vulgare)

Abstract

Treading barley (“Mugifumi” in Japanese) is a barley culturing process that is unique and indispensable in Japan. Generally, roller machines or human feet are used to tread young barley several times (Figure 1). As a model examination, a stainless steel instrument was used for treading barley in this study (Figure 2(a)). Treading damages plants and decreases growth, such as the height and weight of aerial parts, which then recover gradually. In our study, the total amino acid contents increased with the treading stress. The treading stress induced a 1.7-fold increase in aspartic acid contents and an approximately 1.6-fold increase in glutamic acid, proline, cystine, and methionine contents. Isolation and purification suggested that the main components of the methanol-eluted fraction from the young green barley were six known phenolic compounds. Saponarin and lutonarin were the main components. The saponarin content was about 160 mg/g (methanol-soluble fraction) at 10 days after germination. We found that the higher antioxidant activity was due to the increased lutonarin/saponarin ratio from 10% to 24%. Therefore, our results suggest that treading stress is useful for young green barley.

Share and Cite:

R. Koga, T. Meng, E. Nakamura, C. Miura, N. Irino, S. Yahara and R. Kondo, "Model Examination for the Effect of Treading Stress on Young Green Barley (Hordeum vulgare)," American Journal of Plant Sciences, Vol. 4 No. 1, 2013, pp. 174-181. doi: 10.4236/ajps.2013.41023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Yousfi, M. Wissal, H. Mahmoudi, C. Abdelly and M. Gharsalli, “Effect of Salt on Physiological Responses of Barley to Iron Deficiency,” Plant Physiology and Biochemistry, Vol. 45, No. 5, 2007, pp. 309-314. doi:10.1016/j.plaphy.2007.03.013
[2] T. Nishimura, “Study on Structure Activity Relationship of a Phytosiderophore, Mugineic Acid,” The Pharmaceutical Society Japan, Vol. 126, No. 7, 2006, 473-479.
[3] S. Alam, S. Kamel and S. Kawai, “Amelioration of Manganese Toxicity in Barley with Iron,” Journal of Plant Nutrition, Vol. 24, No. 9, 2001, pp. 1421-1433. doi:10.1081/PLN-100106992
[4] A. Vassilev and F. Lindon, “Cdinduced Membrane Damages and Changes in Soluble Protein and Free Amino Acid Contents in Young Barley Plants,” Emirates Journal of Food and Agriculture, Vol. 23, No. 2, 2011, pp. 130-136.
[5] J. Lachman, J. Dudjak, D. Miholavá, D. Kolihová and V. Pivec, “Effect of Cadmium on Flavonoid Content in Young Barley (Hordeum sativum) Plants,” Plant Soil and Environment, Vol. 51, No. 11, 2005, pp. 513-516.
[6] C. W.Yang, H. H. XU, L. L. Wang, J. Liu, D. C Shi and D. L. Wang, “Comparative Effects of Salt-Stress and Alkali-Stress on the Growth, Photosynthesis, Solute Accumulation, and Ion Balance of Barley Plants,” Photosyn- thetica, Vol. 47, No. 1, 2009, pp. 79-86. doi:10.1007/s11099-009-0013-8
[7] A. Thamuer, A. Ferchichi and M. Lopez-Carbonell, “Quantification of Free and Conjugated Abscisic Acid in Five Genotypes of Barley (Hordeum vulgare L.) under Water Stress Conditions,” South African Journal of Botany, Vol. 77, No. 1, 2011, 222-228. doi:10.1016/j.sajb.2010.08.004
[8] K. V. Kocheva and G. I. Georgiev, “Changes in Foliar Proline Concentration of Osmotically Stressed Barley,” Zeitschrift für Naturforschung C. A Journal of Biosciences, Vol. 63, No. 1-2, 2008, pp. 101-104.
[9] G. Sabajeviene, S, Sakalauskiene, S. Lazaauskas, P. Duchovskis, A. Urbonaviciut, G Samuoliene, R. Ulinskaite, J. Sakalauskiene, A. Brazaityte and V. Povilaitis, “The Effect of Ambiet Air Temperature and Substrate Moisture on the Physiological Parameters of Spring Barley,” Zemdirbyst Agriculture, Vol. 95, No. 4, 2008, pp. 71-80.
[10] I. Fedina, K. Georgieva, M. Velitchkova and I. Grigorova, “Effect of Pretreatment of Barley Seedlings with Different Salts on the Level of UV-B Induced and UV-B Absorbing Compounds,” Environmental and Experimental Botany, Vol. 56, No. 3, 2006, pp. 225-230. doi:10.1016/j.envexpbot.2005.02.006
[11] H. Cakirlar, N. Cicek, I. Fedina, K. Georgieva, A. Do?ru and M. Velitchkova, “NaCl Induced Cross-Acclimation to UV-B Radiation in Four Barley (Hordeum vulgare L.) Cultivars,” Acta Physiologiae Plantarum, Vol. 30, No. 4, 2008, pp. 561-567. doi:10.1007/s11738-008-0155-5
[12] Y. Hagiwra, H. Hagiwara and H. Ueyama, “Physiologically Active Substances in Young Green Barley Leaf Extract,” Nippon Shokuhin Kagaku Kogaku Kaishi, Vol. 48, No. 10, 2001, pp. 712-725. doi:10.3136/nskkk.48.712
[13] R. Koga, M. Ikeguchi, M. Tsubata, K. Takagaki, N. Irino and R. Kondo, “Hypotensive Effects of γ-Aminobutyric Acid (GABA) Enriched Young Barley Leaf Powder on Jaoanese Healthy Volunteers,” Journal of Japanese Council for Advanced Food, Vol. 15, No. 1, 2012, pp. 28-35.
[14] R. Koga, M. Tsubata, M. Ikeguchi, K. Takagaki, N. Irino and R. Kondo, “Enriched Production of γ-Aminobutyric Acid on Young Barley Leaves and It Antihypertensive Effect in Spontaneously Hypertensive Rats,” The Journal of Japan Mibyou System, Vol. 18, No. 3, 2012, pp. 11-16.
[15] R. Koga, M. Tsubata, M. Ikeguchi, K. Takagaki, N. Irino and R. Kondo, “Young Barley Leaf Powder Adsurbe Bile Acid as One of Mechanisms of Action against Hypercholesterolemia,” The Japanese Society for Food Science and Technology, 2012, in Press.
[16] R. Koga, Y. Kido, T. Kamiya, M. Tsubata, M. Ikeguchi, K. Takagaki, N. Irino and R. Kondo, “Study of Component Involved in the Effect of Young Barley Leaf Powder on Defecation,” Journal of Japanese Council for Advanced Food, 2012, in Press.
[17] A. Koyanagi and Y. Watanabe, “Mugirui no Saibai to Riyou,” Asakura Publishing Co., Ltd., Tokyo, 2011.
[18] F. Ferreres, P. B. Andrade, P. Valent?o and A. Gil-Izquierdo, “Further Knowledge on Barley (Hordeum vulgare L.) Leaves O-Glycosyl-C-glycosyl Flavones by Liquid Chromatography-UV Diode-Array Detection Electrospray Ionization Mass Spectrometry,” Journal of Chromatography A, Vol. 1182, No. 1, 2008, pp. 56-64. doi:10.1016/j.chroma.2007.12.070
[19] M. Kamiyama and T. Shibamoto, “Flavonoids with Potent Antioxidant Activity Found in Young Barley Leaves,” Journal of Agricultural Food Chemistry, Vol. 60, No. 25, 2012, pp. 6260-6267. doi:10.1021/jf301700j
[20] T. Shimamura, R. Matsuura, T. Tokuda, N. Sugimoto, T. Yamasaki, H. Matsufuji, T. Matsui, K. Matsumoto and H. Ukeda, “Comparison of Conventional Antioxidant Assays for Evaluating Potencies of Natural Antioxidants as Food Additive by Collaborative Study,” Nippon Shokuhin Kagaku Kaishi, Vol. 54, No. 11, 2007, pp. 482-487. doi:10.3136/nskkk.54.482
[21] M. Ohkawa, J. Kinjo, Y. Hagiwara, H. Hagiwara, H. Ueyama, K. Nakamura, R. Ishkawa, M. Ono and T. Mohara, “Three New Anti-Oxidative Saponarin Analogs from Young green Barley Leaves,” Chemical Pharmaceutical Bulletin, Vol. 46, No. 12, 1998, pp. 1887-1890. doi:10.1248/cpb.46.1887
[22] I. Paulckova, J. Ehrenbergerrova, V. Fiedlerova, D. Gabrovska, P. Havlova, M. Holasova, J. Kopacek, J. Ouhrabkova, J. Pinkrova, J. Rysova and K. Vaculova, “Evaluation of Barley Grass as a Potenial Source of Some Nutritional Substances,” Czech Journal Food Science, Vol. 25, No. 2, 2006, pp. 65-72.
[23] A. A. Urquhart and W. K. Joy, “Use of Phloem Exudate Technique in the Study of Amino Acid Transport in Pea Plants,” Plant Physiology, Vol. 68, No. 3, 1981, pp. 750-754. doi:10.1104/pp.68.3.750
[24] Alia and P. Saradhi, “Prolin Accumulation under Heavy Metal Stress,” Journal of Plant Physiology, Vol. 138, No. 5, 1991, pp. 554-558. doi:10.1016/S0176-1617(11)80240-3
[25] R. Kastori, M. Petrovic and N. Petrovic, “Effect of Excess Lead, Cadmium, Copper and Zinc on Water Relations in Sunflower,” Journal Plant Nutrition, Vol. 15, No. 11, pp. 2427-2439. doi:10.1080/01904169209364485
[26] Y. Fukutoku and Y. Yamada, “Diurnal Changes in Water Potential and Free Amino Acid Contents of Water-Stressed and Non-Stressed Soybean Plants,” Japanese Society of Soil Science and Plant Nutrition, Vol. 27, No. 2, 1981, pp. 195-204. doi:10.1080/00380768.1981.10431271
[27] R. Norbaek, K. Brandt and T. Kondo, “Identification of Flavone C-Glycosides Including a New Flavonoid Chromophore from Barley Leaves (Hordeum vulgare L.) by Improved NMR Techniqes,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 5, 2000, pp. 1703-1707. doi:10.1021/jf9910640
[28] R. Norb?k, D. Folsted, I. S. Bleeg, B. T. Christensen, K. Brandt and T. Kondo, “Flavone C-Glycoside, Phenolic Acid, and Nitrogen Contents in Leaves of Barley Subject to Organic Fertilization Treatments,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 3, 2003, pp. 809-813. doi:10.1021/jf0258914
[29] F. Ferreres, Z. Krsková, R. F. Goncalves, P. Valentao, J. A. Pereira, J. Dusek, J. Martin and P. B. Andrede, “Free Water-Soluble Phenolics Profiling in Barley (Hordeum vulgare L.),” Journal of Agricultural and Food Chemistry, Vol. 57, No. 6, 2009, pp. 2405-2409. doi:10.1021/jf8037727
[30] J. A. Benedet, H. Umeda and T. Shibamoto, “Antioxidant Activity of Flavonoids Isolated from Young Green Barley Leaves toward Biological Lipid Samples,” Journal of Agricultural Food Chemistry, Vol. 55, No. 14, 2007, pp. 5499-5504. doi:10.1021/jf070543t
[31] A. D. Sarma, A. R. Mallick and A. K. Ghosh, “Free Radicals and Their Role in Different Clinical Conditions: An Overview,” International Journal of Pharma Sciences and Research, Vol. 1, No. 3, 2010, pp. 185-192.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.