MODIS-Derived Arctic Land-Surface Temperature Trends

Abstract

Across the Arctic changes in active layer, melting of glaciers and ground ice, thawing of permafrost and sequestration changes of carbon storage are driven in part by variations of land surface heat absorption, conduction and re-radiation relative to solar irradiance. We investigate Arctic land-surface temperature changes and regional variations derived by the MODIS sensors on NASA Aqua and Terra from March 2000 through July 2012. Over this decadal period we detect increase in the number of days with daytime land-surface temperature above 0. There are indications of increasing trends of land-surface temperature change. Regional variations of the changes in land-surface temperature likely arise due to surface material types and topography relative to the daytime variation of solar irradiance.

Share and Cite:

R. Muskett, "MODIS-Derived Arctic Land-Surface Temperature Trends," Atmospheric and Climate Sciences, Vol. 3 No. 1, 2013, pp. 55-60. doi: 10.4236/acs.2013.31008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Mannstein, ‘‘Surface Energy Budget, Surface Temperature and Thermal Inertia,’’ In: R. A. Vaughan and D. Reidel, Eds., Remote Sensing Applications in Meteorology and Climatology, NATO Science Series Catalog: Mathematical and Physical Sciences, Sci. Reidel Publishing Co., Dordrecht, 1987, pp. 391-410.
[2] Z. Wan, “MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD),” National Aeronautics and Space U.S. Department of Commerce, Washington, 1999.
[3] J. C. Rowland, C. E. Jones, G. Altmann, R. Bryan, B. T. Crosby, G. L. Geernaert, L. D. Hinzman, D. L. Kane, D. M. Lawrence, A. Mancino, P. Marsh, J. P. McNamara, V. E. Romanovsky, H. Toniolo, B. J. Travis, E. Trochim and C. J. Wilson, “Arctic Landscapes in Transition: Responses to Thawing Permafrost,” EOS Transactions of the American Geophysical Union, Vol. 91, No. 26, 2010, p. 229. doi:10.1029/2010EO260001
[4] M. T. Jorgenson, V. E. Romanovsky, J. Harden, Y. L. Shur, J. O’Donnell, T. Schuur and M. Kanevskiy, “2010: Resilience and Vulnerability of Permafrost to Climate Change,” Canadian Journal of Forest Research, Vol. 40, No. 4, 2010, pp. 1219-1236. doi:10.1139/X10-060
[5] G. Grosse, S. Marchenko, V. Romanovsky, K. P. Wickland, N. French, M. Waldrop, L. Bourgeau-Chavez, R. Striegl, J. Harden, M. Turetsky, A. D. McGuire, P. Camill, C. Tarnocai, S. Frolking, E. Schuur and T. Jorgenson, “Vulnerability of High Latitude Soil Organic Carbon in North America to Disturbance,” Journal Geophysical Research, Vol. 116, 2011, Article ID: G00K06. doi:10.1029/2010JG001507
[6] R. A. Houghton, E. A. Davidson and G. M. Woodwell, “Missing Sinks, Feedbacks, and Understanding the Role of Terrestrial Ecosystems in the Global Carbon Balance,” Global Biogeochemical Cycles, Vol. 12, No. 1, 1998, pp. 25-34. doi:10.1029/97GB02729
[7] X. X. Xiong, K. F. Chiang, A. S. Wu, W. L. Barnes, B. Guenther and V. V. Salomonson, “Multiyear On-Orbit Calibration and Performance of Terra MODIS Thermal Emissive Bands,” IEEE Transaction on Geoscience and Remote Sensing, Vol. 46, No. 6, 2008, pp. 1790-1803. doi:10.1109/TGRS. 2008.916217
[8] C. L. Parkinson, A. Ward and M. D. King, “Earth Science Reference Handbook: A Guide to NASA’s Earth Science Program and Earth Observing Satellite Missions,” In: C. L. Parkinson, A. Ward and M. D. King, Eds., Earth Science Reference Handbook, National Aeronautics and Space Administration, U.S. Department of Commerce, Washington, 2006, pp. 1-6, 73-88 and 225-227.
[9] T. S. L’Ecuyer and J. H. Jiang, “Touring the Atmosphere aboard the A-Train,” Physics Today, Vol. 63, No. 7, 2010, pp. 36-41.
[10] X. X. Xiong, J. Q. Sun and W. Barnes, “Intercomparison of On-Orbit Calibration Consistency Between Terra and Aqua MODIS Reflective Solar Bands Using the Moon,” IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 4, 2008, pp. 778-782. doi:10.1109/LGRS.2008.2005591
[11] Z. Wan, “New Refinements and Validation of MODIS Land-Surface Temperature/Emissivity Products,” Remote Sensing Environment, Vol. 112, No. 1, 2008, pp. 59-74. doi:10.1016/j.rse. 2006.06.026
[12] C. Coll, Z. Wan and G. M. Galve, “Temperature-Based and Radiance-Based Validations of the V5 MODIS Land Surface Temperature Product,” Journal Geophysical Research, Vol. 114, 2009, Article ID: D20102.
[13] W. Wang, S. Liang and T. Meyers, “Validating MODIS Land Surface Temperature Products Using Long-Term Nighttime Ground Measurements,” Remote Sensing Environment, Vol. 112, No. 3, 2008, pp. 623-635.
[14] D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman and K. Steffen, “Comparison of Satellite-Derived and In-Situ Observations of Ice and Snow Surface Temperatures over Greenland,” Remote Sensing Environment, Vol. 112, No. 10, 2008, pp. 3739-3749. doi:10.1016/j.rse.2008.05.007
[15] S. Hachem, C. R. Duguay and M. Allard, “Comparison of MODIS-Derived Land Surface Temperatures with Near-Surface Soil and Air Temperature Measurements in the Continuous Permafrost Terrain,” The Cryosphere Discussion, Vol. 5, No. 3, 2011, pp. 1583-1625. doi:10.5194/tcd-5-1583-2011
[16] B. Weatherhead, A. Tanskanen and A. Stevermer, “Factors Affecting Surface Ultraviolet Radiation Levels in the Arctic,” In: C. J. Cleveland, Ed., Encyclopedia of Earth, International Arctic Science Committee, Environmental Information Coalition, National Council for Science and the Environment, Washington, 2010, pp. 1-17.
[17] I. G. Usoskin, “A History of Solar Activity over Millennia,” Living Reviews In Solar Physics, Vol. 5, No. 3, 2008, pp. 1-88. http://www.livingreviews.org/lrsp-2008-3
[18] F. R. Stephenson and A. W. Wolfendale, “Secular Solar and Geomagnetic Variations in the Last 10,000 Years,” In: F. R. Stephenson and A. W. Wolfendale, Eds., NATO ASI Series C, Mathematical and Physical Sciences, Kluwer Academic Publishers—Springer, New York, 1988.
[19] W.W.-H. Soon, “Solar Arctic-Mediated Climate Variation on Multidecadal to Centennial Timescales: Empirical Evidence, Mechanistic Explanations, and Testable Consequences,” Physical Geography, Vol. 30, No. 2, 2009, pp. 144-184. doi:10.2747/0272-3646.30.2.144
[20] W.W.-H. Soon, “Variable Solar Irradiance as a Plausible Agent for Multidecadal Variations in the Arctic-Wide Surface Air Temperature Record of the Past 130 Years,” Geophysical Research Letters, Vol. 32, No. 16, 2005, p. L16712. doi:10.1029/2005GL023429
[21] I. G. Usoskin, S. K. Solanki and G. A. Kovaltsov, “Grand Minima and Maxima of Solar Activity: New Observational Constraints,” Astronomy and Astrophysics, Vol. 471, No. 1, 2007, pp. 301-309. doi:10.1051/0004-6361:20077704
[22] N. Scafetta and B. J. West, “Phenomenological Solar Signature in 400 Years of Reconstructed Northern Hemisphere Temperature Record,” Geophysical Research Letters, Vol. 33, No. 17, 2006, p. L17718. doi:10.1029/2006GL027142
[23] B. A. Tinsley and F. Yu, “Atmospheric Ionization and Clouds as Links Between Solar Activity and Climate,” In: M. Judit, R. Fox, C. Frohlich, H. S. Hudson, J. Kuhn, J. McCormack, G. North, W. Sprigg and S. T. Wu, Eds., Solar Variability and Its Effects on Climate, AGU Geophysical Monograph Series, American Geophysical Union, Washington, 2004, pp. 321-339.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.