Ben-Naim’s “Pitfall”: Don Quixote’s Windmill


Ben-Naim in three articles dismissed and answered the Levinthals paradox. He announces there are pitfalls caused by the misinterpretation of thermodynamic hypothesis. He claims no existence of Gibbs free energy formula where the variable is a protein’s conformation X . His Gibbs energy functional is G(T, P, N, P(R)), where the variable is probability distributions P (R) of the conformations. His “minimum distribution Peq is wrong. By carefully establishing thermodynamic systems, we demonstrate how to apply quantum statistics to derive Gibbs free energy formula G(X). The formula of the folding force is given.

Share and Cite:

Y. Fang, "Ben-Naim’s “Pitfall”: Don Quixote’s Windmill," Open Journal of Biophysics, Vol. 3 No. 1, 2013, pp. 13-21. doi: 10.4236/ojbiphy.2013.31002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Levinthal, “How to Fold Graciously,” Mossbauer Spectroscopy in Biological Systems Proceedings, Vol. 67, No. 41, 1969, pp. 22-26.
[2] A. Ben-Naim, “Levinthal’s Paradox Revisited, and Dismissed,” Open Journal of Biophysics, Vol. 2, No. 2, 2012, pp. 23-32. doi:10.4236/ojbiphy.2012.22004
[3] A. Ben-Naim, “Pitfalls in Anfinsen’s Thermodynamic Hypothesis,” Chemical Physics Letters, Vol. 511, No. 1-3, 2011, pp. 126-128. doi:10.1016/j.cplett.2011.05.049
[4] A. Ben-Naim, “Levinthal’s Question Revisited, and Answered,” Journal of Biomolecular Structure and Dynamics, Vol. 30, No. 1, 2012, pp. 113-124. doi:10.1080/07391102.2012.674286
[5] C. B. Anfinsen, “Principles that Govern the Folding of Protein Chains,” Science, Vol. 181, No. 4096, 1973, pp. 223-230. doi:10.1126/science.181.4096.223
[6] I, Lazaridis and M. Karplus, “Thermodynamics of Protein Folding: A Microscopic View,” Biophysical Chemistry, Vol. 100, No. 1-3, 2003, pp. 367-395. doi:10.1016/S0301-4622(02)00293-4
[7] A. Borgia, P. M. Williams and J. Clarke, “Single-Molecule Studies of Protein Folding,” Annual Review of Biochemistry, Vol. 77, 2008, pp. 101-125. doi:10.1146/annurev.biochem.77.060706.093102
[8] J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt and M. Rief, “The Complex Folding Network of Single Calmodulin Molecules,” Science, Vol. 334, No. 6055, 2011, pp. 512-516. doi:10.1126/science.1207598
[9] R. F. W. Bader, “Atoms in Molecules: A Quantum Theory,” Clarendon Press, Oxford, 1990.
[10] P. Popelier, “Atoms in Molecules: An Introduction,” Prentice Hall, Upper Saddle River, 2000.
[11] F. M. Richards, “Areas, Volumes, Packing, and Protein Structure,” Annual Review of Biophysics and Bioengineering, Vol. 6, 1977, pp. 151-176. doi:10.1146/
[12] I. Tu?ón, E. Silla and J. Pascual-Ahuir, “Molecular Surface Area and Hydrophobic Effect,” Protien Engineering, Vol. 5, No. 8, 1992, pp. 715-716. doi:10.1093/protein/5.8.715
[13] R. M. Jackson and M. J. E. Sternberg, “Protein Surface Area Defined,” Nature, Vol. 366, No. 6456, 1993, p. 638. doi:10.1038/366638b0
[14] B. Lee and F. M. Richards, “The Interpretation of Protein Structures: Estimation of Static Accessibility,” Journal of Molecular Biology, Vol. 55, No. 3, 1971, pp. 379-400. doi:10.1016/0022-2836(71)90324-X
[15] Y. Fang and J. Jing, “Geometry, Thermodynamics, and Protein,” Journal of Theoretical Biology, Vol. 262, No. 3, 2010, pp. 382-390. doi:10.1016/j.jtbi.2009.09.013
[16] D. Eisenberg and A. D. McLachlan, “Solvation Energy in Protein Folding and Binding,” Nature, Vol. 319, No. 6050, 1986, pp. 199-203. doi:10.1038/319199a0
[17] Y. Fang, “A Gibbs Free Energy Formula for Protein Folding Derived from Quantum Statistics,” SCIENCE CHINA, Physics, Mechanics & Astronomy, 2013.
[18] Y. Fang, “Gibbs Free Energy Formula for Protein Folding,” In: R. Morales-Rodriguez, Ed., Thermodynamics: Fundamentals and Its Application in Science, INTECHOPEN.COM, Novi Sad, 2012, pp. 47-82.
[19] Y. Fang, “Mathematical Protein Folding Problem,” In: D. Hoffman, Ed., Global Theory of Minimal Surfaces, Proceedings of the Clay Mathematics, Vol. 2, 2005, pp. 611-622.
[20] Y. Fang and J. Jing, “Implementation of a Mathematical Protein Folding Model,” International Journal of Pure and Applied Mathematics, Vol. 42, No. 4, 2008, pp. 481-488.
[21] W. Greiner, L. Neise and H. Stoker, “Thermodynamics and Statistical Mechanics,” Spriger-Verlag, New York, 1994.
[22] X. Dai, “Advanced Statistical Physics,” Fudan University Press, Shanghai, 2007.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.