Smell reduction and disinfection of textile materials by dielectric barrier discharges
Siegfried Müller, Rolf-Jürgen Zahn, Torsten Koburger, Klaus-Dieter Weltmann
.
DOI: 10.4236/ns.2010.29128   PDF    HTML     6,136 Downloads   11,247 Views   Citations

Abstract

In this paper we present investigations of textile cleaning of cotton fabrics with respect to both, the smell reduction and the disinfection of textile materials. Normal pressure plasma sources on the base of dielectric barrier discharge (DBD) were used for the purification and disinfection of textiles. For gaseous odour components which stick to clothing the results have shown that one can reach an uncritical odour threshold. In the case of disinfection a significant reduction of microorganism population in some of the samples could be noted. In particular a high reactivity is reached, while in parallel with a radiation by ultraviolet light ozone is activated.

Share and Cite:

Müller, S. , Zahn, R. , Koburger, T. and Weltmann, K. (2010) Smell reduction and disinfection of textile materials by dielectric barrier discharges. Natural Science, 2, 1044-1048. doi: 10.4236/ns.2010.29128.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Penetrante, B.M. and Schultheis, S.E. (1993) NATO advanced research workshop on non-thermal plasma techniques for pollution control. NATO ASI Series G: Ecological Sciences, Springer-Verlag Berlin-Heidelberg.
[2] Kim, H.-H. (2004) Plasma Process. Polym., (1), 91-110.
[3] Grundmann, J., Müller, S. and Zahn, R.-J. (2005) Plasma Chem. Plasma Process., (25), 455-456.
[4] Müller, S., Conrads, J. and Best, W. (2000) Int. Sympos. on High Pressure Low Temperature Plasma Chem., Con-tributed Papers, (2), 340-344.
[5] Kogelschatz, U. (2007) Plasma Process. Polym. (4), 678-681.
[6] Becker, K.H., Kogelschatz, U., Schoenbach, K.H. and Barker, R.J. (2005) Non equilibrium air plasmas at at-mospheric pressure. Inst. of Phys. Publ., IOP Publishing Ltd, Bristol and Philadelphia.
[7] Müller, S. and Zahn, R.-J. (2007) Contr. to Plasma Phys. (47), 520-529.
[8] Mendis, D.A., Rosenberg, M. and Azam, F. (2000) IEEE Trans. Plasma Sci. (28), 1304-1306.
[9] Laroussi, M., Richardson, J.P. and Dobbs, F.C. (2002) Appl. Phys. Lett. (81), 772-774.
[10] Stoffels, E., Flikweert, A.J., Stoffels, W.W. and Kroesen, G.M.W. (2002) Plasma Sources Sci. Technol. (11) 383-388.
[11] Laroussi, M., Mendis, D.A. and Rosenberg, M. (2003) New Journ. Phys. (5) 41.1-41.10.
[12] Laroussi, M. (2005) Plasma Process. Polym. (2) 391-400.
[13] Laroussi, M., Tendero, C., Lu, X., Alla, S. and Hynes, W.L. (2005) Plasma Process. Polym. (3), 470-473.
[14] Brandenburg, R., Ehlbeck, J., Stieber, M., Woedtke, T.v. Zeymer, J., Schlüter, O. and Weltmann, K.-D. (2007) Contr. to Plasma Phys. (47), 72-79.
[15] Vicoveanu, D., Ohtsu, Y. and Fujita, H. (2008) Jap. Journ. of Appl. Phys. (47), 1130-1135.
[16] Vicoveanu, D., Popescu, S., Ohtsu, Y. and Fujita, H. (2008) Plasma Process. Polym. (5), 350-358.
[17] Kang, J.Y. and Samardi, M. (2004) AATCC Review (10), 28-32.
[18] Shishoo, R. (2007) Plasma technologies for textiles. Woodhead Publishing Limited, Cambridge, UK, Wood-head Textiles Series No. 62.
[19] Müller, S., Zahn, R.-J. and Grundmann, J. (2007) Plasma Process. Polym. (4), S1004-S1008.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.