Share This Article:

Mechanical Properties of Porosity-Free Beta Tricalcium Phosphate (β-TCP) Ceramic by Sharp and Spherical Indentations

Abstract Full-Text HTML XML Download Download as PDF (Size:855KB) PP. 16-28
DOI: 10.4236/njgc.2013.31004    3,720 Downloads   6,665 Views   Citations

ABSTRACT

Instrumented indentation has been developed for determining the mechanical properties of materials but an accurate determination of these properties requires attention on contact stiffness analysis, indentation size effect, elastic modulus mode of calculation, role of stress distribution around the indent and its introduction in expanding cavity models for tensile mechanical properties determination. In the present work, models for hardness, elastic modulus and plastic properties determination by indentation are briefly reviewed and applied for the characterization of a porosity-free β-TCP bioceramic. As a main result the elastic modulus is found to be equal to 162 GPa resulting from the application of different approaches based on the use of various sharp and spherical indenters. Additionally, Martens and contact macrohardnesses were found to be independent on the dwell-time and equals to 4.1 and 6.3 GPa, respectively. Finally, models based on Hollomon’s and Ludwik’s laws as well as expanding cavity models were critically analyzed in light of their capacity to determine the yield stress and to represent the behavior law of the material. As a main result, the yield stress of the β-TCP is found to be equal to 2 GPa.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Chicot, A. Tricoteaux, J. Lesage, A. Leriche, M. Descamps and E. Rguiti-Constantin, "Mechanical Properties of Porosity-Free Beta Tricalcium Phosphate (β-TCP) Ceramic by Sharp and Spherical Indentations," New Journal of Glass and Ceramics, Vol. 3 No. 1, 2013, pp. 16-28. doi: 10.4236/njgc.2013.31004.

References

[1] W. D. Nix and H. Gao, “Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity,” Journal of Mechanic and Physic of Solids, Vol. 46, No. 3, 1998, pp. 411-425. doi:10.1016/S0022-5096(97)00086-0
[2] D. Chicot, L. Gil, K. Silva, F. Roudet, E. S. Pu-chi-Cabrera, M. H. Staia and D. G. Teer, “Thin Film Hardness Determination Using Indentation Loading Curve Modeling,” Thin Solid Films, Vol. 518, No. 19, 2010, pp. 5565-5571. doi:10.1016/j.tsf.2010.05.063
[3] X. L. Gao, “An Expanding Cavity Model Incorporating Strain-Hardening and Indentation Size Effects,” International Journal of Solids and Structure, Vol. 43, No. 21, 2006, pp. 6615-6629. doi:10.1016/j.ijsolstr.2006.01.008
[4] J. R. Matthews, “Indentation Hardness and Hot Pressing,” Acta Metallurgica, Vol. 28, No. 3, 1980, pp. 311-318. doi:10.1016/0001-6160(80)90166-2
[5] J. Alcala, A. C. Barone and M. Anglada, “The Influence of Plastic Hardening on Surface Deformation Modes around Vickers and Spherical Indents,” Acta Materialia, Vol. 48, No. 13, 2000, pp. 3451-3464. doi:10.1016/S1359-6454(00)00140-3
[6] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Material Research, Vol. 7, No. 6, 1992, pp. 1564-1583. doi:10.1557/JMR.1992.1564
[7] J. C. Hay, A. Bolshakov and G. M. Pharr, “Critical Examination of the Fundamental Relations Used in the Analysis of Nanoindentation Data,” Journal of Material Research, Vol. 14, No. 6, 1999, pp. 2296-2305. doi:10.1557/JMR.1999.0306
[8] J. M. Antunes, L. F. Menezes and J. V. Fernandes, “Three-Dimensional Numerical Simulation of Vickers Indentation Tests,” International Journal of Solid and Structure, Vol. 43, No. 3-4, 2006, pp. 784-806. doi:10.1016/j.ijsolstr.2005.02.048
[9] A. C. Fischer-Cripps, “Critical Review of Analysis and Interpretation of Nanoindentation Test Data,” Surface and Coatings Technology, Vol. 200, No. 14-15, 2006, pp. 4153-4165. doi:10.1016/j.surfcoat.2005.03.018
[10] D. Chicot, F. Roudet, A. Zaoui, G. Louis and V. Lepingle, “Influence of Visco-Elasto-Plastic Properties of Magnetite on the Elastic Modulus: Multicyclic Indentation and Theoretical Studies,” Material Chemistry and Physics, Vol. 119, No. 1-2, 2010, pp. 75-81. doi:10.1016/j.matchemphys.2009.07.033
[11] T. Chudoba, N. Schwarzer and F. Richter, “Determination of Elastic Properties of Thin Films by Indentation Measurements with a Spherical Indenter,” Surface and Coatings Technology, Vol. 127, No. 1, 2000, pp. 9-17. doi:10.1016/S0257-8972(00)00552-1
[12] D. B. Marshall, T. Noma and A. G. Evans, “A Simple Method for Determining Elastic-Modulus-to-Hardness Ratios Using Knoop Indentation Measurements,” Journal of American Ceramic Society, Vol. 65, No. 10, 1980, pp. C175-C176. doi:10.1111/j.1151-2916.1982.tb10357.x
[13] A. Tricoteaux, E. Rguiti, D. Chicot, L. Boilet, M. Descamps, A. Leriche and J. Lesage, “Influence of Porosity on the Mechanical Properties of Microporous ?-TCP Bioceramics by Usual and Instrumented Vickers Microindentation,” Journal of European Ceramic Society, Vol. 31, No. 8, 2011, pp. 1361-1369. doi:10.1016/j.jeurceramsoc.2011.02.005
[14] G. D. Quinn, P. L. Patel and I. Lloyd, “Effect of Loading Rate upon Conventional Ceramic Microindentation Hardness,” Journal of Research of the National Institute of Standards and Technology, Vol. 107, No. 3, 2002, pp. 299-306. doi:10.6028/jres.107.023
[15] D. Chicot, D. Mercier, F. Roudet, K. Silva, M. H. Staia and J. Lesage, “Comparison of Instrumented Knoop and Vickers Hardness Measurements on Various Soft Materials and Hard Ceramics,” Journal of European Ceramic Society, Vol. 27, No. 4, 2007, pp. 1905-1911. doi:10.1016/j.jeurceramsoc.2006.06.011
[16] M. F. Doerner and W. D. Nix, “A Method of Interpreting the Data from the Depth-Sensing Indentation Instruments,” Journal of Materials Research, Vol. 1, No. 4, 1986, pp. 601-609. doi:10.1557/JMR.1986.0601
[17] M. Troyon and L. Huang, “Comparison of Different Analysis Methods in Nanoindentation and Influence on the Correction Factor for Contact Area,” Surface and Coatings Technology, Vol. 201, No. 3-4, 2006, pp. 1613-1619. doi:10.1016/j.surfcoat.2006.02.033
[18] R. B. King, “Elastic Analysis of Some Punch Problems for Layered Medium,” International Journal of Solids and Structures, Vol. 23, No. 12, 1987, pp. 1657-1664. doi:10.1016/0020-7683(87)90116-8
[19] M. Dao, N. Chollacoop, K. J. Van Vliet, T. A. Venkatesh and S. Suresh, “Computational Modeling of the Foward Reverse Problems in Instrumented Sharp Indentation,” Acta Materialia, Vol. 49, No. 19, 2001, pp. 3899-3918. doi:10.1016/S1359-6454(01)00295-6
[20] R. G. Veprek, D. M. Parks, A. S. Argon and S. Veprek, “Non-Linear Finite Element Constitutive Modeling of Mechanical Properties of Hard and Superhard Materials Studied by Indentation,” Material Science and Engineering A, Vol. 422, No. 1-2, 2006, pp. 205-217. doi:10.1016/j.msea.2006.02.020
[21] Y. T. Cheng and C. M. Cheng, “Scaling, Dimensional Analysis, and Indentation Measurements,” Material Science and Engineering R: Reports, Vol. 44, No. 4-5, 2004, pp. 91-149. doi:10.1016/j.mser.2004.05.001
[22] D. Chicot, F. Roudet, A. Soom and J. Lesage, “Interpretation of Instrumented Hardness Measurements on Stainless Steel with Different Surface Preparations,” Surface Engineering, Vol. 23, No. 1, 2007, pp. 32-39. doi:10.1179/174329407X161573
[23] K. Durst, B. Backes and M. Goken, “Indentation Size Effect in Metallic Materials: Correcting for the Size of the Plastic Zone,” Scripta Materialia, Vol. 52, No. 11, 2005, pp. 1093-1097. doi:10.1016/j.scriptamat.2005.02.009
[24] D. Chicot, “Hardness Length-Scale Factor to Model Nano-and Micro-Indentation Size Effects,” Material Science and Engineering A, Vol. 499, No. 1-2, 2009, pp. 454-461. doi:10.1016/j.msea.2008.09.040
[25] K. Zeng and C. H. Chiu, “An Analysis of Load-Penetration Curves from Instrumented Indentation,” Acta Materialia, Vol. 49, No. 17, 2001, pp. 3539-3551. doi:10.1016/S1359-6454(01)00245-2
[26] D. Tabor, “Hardness of Metals,” Clarendon Press, Oxford, 1951.
[27] P. Ludwik, “Element der Technologischen Mechanik,” Springer Berlin, Berlin, 1909.
[28] J. H. Hollomon, “Tensile Deformation,” Transactions of the Metallurgical Society of AIME, Vol. 162, 1945, pp. 268-290.
[29] H. W. Swift, “Plastic Instability under Plane Stress,” Journal of the Mechanics and Physics of Solids, Vol. 1, No. 1, 1952, pp. 1-18. doi:10.1016/0022-5096(52)90002-1
[30] Y. Huang, X. Feng, G. M. Pharr and K. C. Hwang, “A Nano-Indentation Model for Spherical Indenters,” Modelling and Simulation in Materials Science Engineering, Vol. 15, No. 1, 2007, pp. S255-S262. doi:10.1088/0965-0393/15/1/S19
[31] S. Kobayashi and S. Sakamoto, “Effect of Hydrolysis on Mechanical Properties of Tricalcium Phosphate/Poly-L-Lactide Composites,” Journal of Materials Science: Materials in Medicine, Vol. 20, No. 1, 2009, pp. 379-386. doi:10.1007/s10856-008-3583-2
[32] S. Yamadi and S. Kobayashi, “Effects of Strain Rate on the Mechanical Properties of Tricalcium Phosphate/Poly (L-Lactide) Composites,” Journal of Materials Science: Materials in Medicine, Vol. 20, No. 1, 2009, pp. 67-74. doi:10.1007/s10856-008-3553-8
[33] A. C. S. Dantas, P. Greil and F. A. Müller, “Effect of CO32? Incorporation on the Mechanical Properties of Wet Chemically Synthesized Β-Tricalcium Phosphate (TCP) Ceramics,” Journal of American Ceramic Society, Vol. 91, No. 3, 2008, pp. 1030-1033. doi:10.1111/j.1551-2916.2007.02208.x
[34] Y. Shibata, L. H. He, Y. Kataoka, T. Miyazaki and M. V. Swain, “Micromechanical Property Recovery of Human Carious Dentin Achieved with Colloidal Nano-β-Tricalcium Phosphate,” Journal of Dental Research, Vol. 87, No. 3, 2008, pp. 233-237. doi:10.1177/154405910808700315
[35] J. E. Field and R. H. Telling, “The Young’s Modulus and Poisson Ratio of Diamond,” PCS Cavendish Laboratory, Cambridge, 1999.
[36] H. C. Hyun, M. Kim, J. H. Lee and H. Lee, “A Dual Conical Indentation Technique Based on FEA Solutions for Property Evaluation,” Mechanic of Materials, Vol. 43, No. 6, 2011, pp. 313-331. doi:10.1016/j.mechmat.2011.03.003
[37] B. Viswanath, R. Raghavan, N. P. Gurao, U. Ramamurty and N. Ravishankar, “Mechanical Properties of Tricalcium Phosphate Single Crystals Grown by Molten Salt Synthesis,” Acta Biomaterialia, Vol. 4, No. 5, 2008, pp. 1448-1454. doi:10.1016/j.actbio.2008.02.031
[38] C. X. Wang, X. Zhoub and M. Wang, “Influence of Sintering Temperatures on Hardness and Young’s Modulus of Tricalcium Phosphate Bioceramic by Nanoindentation Technique,” Materials Characterization, Vol. 52, No. 4-5, 2004, pp. 301-307. doi:10.1016/j.matchar.2004.06.007
[39] D. S. Metsger, M. R. Rieger and D. W. Foreman, “Mechanical Properties of Sintered Hydroxyapatite and Tricalcium Phosphate Ceramic,” Journal of Materials Science: Materials in Medicine, Vol. 10, No. 1, 1999, pp. 9-17. doi:10.1023/A:1008883809160
[40] D. Chicot, F. Roudet, V. Lepingle and G. Louis, “Strain Gradient Plasticity to Study Hardness Behavior of Magnetite (Fe3O4) under Multicyclic Indentation,” Journal of Material Research, Vol. 24, No. 3, 2009, pp. 749-759. doi:10.1557/jmr.2009.0098
[41] T. T. Zhu, A. J. Bushby and D. J. Dunstan, “Size Effect in the Initiation of Plasticity for Ceramics in Nanoindentation,” Journal of the Mechanics and Physics of Solids, Vol. 56, No. 4, 2008, pp. 1170-1185. doi:10.1016/j.jmps.2007.10.003

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.