ACCEPT-NMR: A New Tool for the Analysis of Crystal Contacts and Their Links to NMR Chemical Shift Perturbations


We have developed an open-source cross-platform software toolkit entitled ACCEPT-NMR (Automated Crystal Contact Extrapolation/Prediction Toolkit for NMR) as a helpful tool to automate many of the complex tasks required to find and visualize crystal contacts in structures of biomolecules and biomolecular assemblies. This toolkit provides many powerful features geared toward NMR spectroscopy and related disciplines, such as isotopic labeling, advanced visualization options, and reporting tools. Using this software, we have undertaken a survey of available chemical shift data in the literature and deposited in the BMRB, and show that the mere presence of one or more crystal contacts to a residue confers an approximately 65% likelihood of significant chemical shift perturbations (relative to solution NMR chemical shifts). The presence of each additional crystal contact subsequently increases this probability, resulting in predictive accuracies in excess of 80% in many cases. Conversely, the presence of a significant experimental chemical shift perturbation indicates a >60% likelihood of finding one or more crystal contacts to a particular residue. Pinpointing sites likely to experience large CSPs is critical to mapping solution NMR chemical shifts onto solid-state NMR data as a basis for preliminary assignments, and can thus simplify the assignment process for complex biomolecules. Mapping observed CSPs onto the molecular structure, on the other hand, can indicate the presence of crystal interfaces where no crystal structure is available. Finally, by detecting sites critical to intermolecular interfaces, ACCEPT-NMR can help guide experimental approaches (e.g. isotopic labeling schemes) to detect and probe specific inter-subunit interactions.

Share and Cite:

I. Sergeyev and A. McDermott, "ACCEPT-NMR: A New Tool for the Analysis of Crystal Contacts and Their Links to NMR Chemical Shift Perturbations," Journal of Crystallization Process and Technology, Vol. 3 No. 1, 2013, pp. 12-27. doi: 10.4236/jcpt.2013.31003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] [1] W. T. Franks, K. D. Kloepper, B. J. Wylie and C. M. Rienstra, “Four-Dimensional Heteronuclear Correlation Experiments for Chemical Shift Assignment of Solid Proteins,” Journal of Biomolecular NMR, Vol. 39, No. 2, 2007, pp. 107-131. doi:10.1007/s10858-007-9179-1
[2] M. Andrec, D. A. Snyder, Z. Y. Zhou, J. Young, G. T. Montellone and R. M. Levy, “A Large Data Set Comparison of Protein Structures Determined by Crystallography and NMR: Statistical Test for Structural Differences and the Effect of Crystal Packing,” Proteins-Structure Function and Bioinformatics, Vol. 69, No. 3, 2007, pp. 449-465. doi:10.1002/prot.21507
[3] S. A. Serniwka and G. S. Shaw, “The Structure of the UbcH8-Ubiquitin Complex Shows a Unique Ubiquitin Interaction Site,” Biochemistry, Vol. 48, No. 51, 2009, pp. 12169-12179. doi:10.1021/bi901686j
[4] S. G. Zech, E. Olejniczak, P. Hajduk, J. Mack and A. E. McDermott, “Characterization of Protein-Ligand Interactions by High-Resolution Solid-State NMR Spectroscopy,” Journal of the American Chemical Society, Vol. 126, No. 43, 2004, pp. 13948-13953. doi:10.1021/ja040086m
[5] O. Carugo and P. Argos, “Protein-Protein Crystal-Packing Contacts,” Protein Science, Vol. 6, No. 10, 1997, pp. 2261-2263. doi:10.1002/pro.5560061021
[6] M. A. Scharer, M. G. Grutter and G. Capitani, “CRK: An Evolutionary Approach for Distinguishing Biologically Relevant Interfaces from Crystal Contacts,” ProteinsStructure Function and Bioinformatics, Vol. 78, No. 12, 2010, pp. 2707-2713. doi:10.1002/prot.22787
[7] S. Dasgupta, G. H. Iyer, S. H. Bryant, C. E. Lawrence and J. A. Bell, “Extent and Nature of Contacts between Protein Molecules in Crystal Lattices and between Subunits of Protein Oligomers,” Proteins-Structure Function and Genetics, Vol. 28, No. 4, 1997, pp. 494-514. doi:10.1002/(SICI)1097-0134(199708)28:4<494::AID-PROT4>3.0.CO;2-A
[8] J. Janin and F. Rodier, “Protein-Protein Interaction at Crystal Contacts,” Proteins-Structure Function and Genetics, Vol. 23, No. 4, 1995, pp. 580-587. doi:10.1002/prot.340230413
[9] K. V. R. Kishan, J. P. Zeelen, M. E. M. Noble, T. V. Borchert and R. K. Wierenga, “Comparison of the Structures and the Crystal Contacts of Trypanosomal Triosephosphate Isomerase in 4 Different Crystal Forms,” Protein Science, Vol. 3, No. 5, 1994, pp. 779-787.
[10] G. Pellicane, G. Smith and L. Sarkisov, “Molecular Dynamics Characterization of Protein Crystal Contacts in Aqueous Solutions,” Physical Review Letters, Vol. 101, No. 24, 2008, 4 p. doi:10.1103/PhysRevLett.101.248102
[11] C. N. Nanev, “How Do Crystal Lattice Contacts Reveal Protein Crystallization Mechanism?” Crystal Research and Technology, Vol. 43, No. 9, 2008, pp. 914-920. doi:10.1002/crat.200800214
[12] K. R. Phipps and H. Li, “Protein-RNA Contacts at Crystal Packing Surfaces,” Proteins-Structure Function and Bioinformatics, Vol. 67, No. 1, 2007, pp. 121-127. doi:10.1002/prot.21230
[13] M. Cieslik and Z. S. Derewenda, “The Role of Entropy and Polarity in Intermolecular Contacts in Protein Crystals,” Acta Crystallographica Section D: Biological Crystallography, Vol. 65, 2009, pp. 500-509. doi:10.1107/S0907444909009500
[14] R. P. Saha, R. P. Bahadur and P. Chakrabarti, “Interresidue Contacts in Proteins and Protein-Protein Interfaces and Their Use in Characterizing the Homodimeric Interface,” Journal of Proteome Research, Vol. 4, No. 5, 2005, pp. 1600-1609. doi:10.1021/pr050118k
[15] R. P. Saha, R. Bhattacharyya and P. Chakrabarti, “Interaction Geometry Involving Planar Groups in Protein-Protein Interfaces,” Proteins-Structure Function and Bioinformatics, Vol. 67, No. 1, 2007, pp. 84-97. doi:10.1002/prot.21244
[16] G. H. Iyer, S. Dasgupta and J. A. Bell, “Ionic Strength and Intermolecular Contacts in Protein Crystals,” Journal of Crystal Growth, Vol. 217, No. 4, 2000, pp. 429-440. doi:10.1016/S0022-0248(00)00503-0
[17] B. Kobe, G. Guncar, R. Buchholz, T. Huber, B. Maco, N. Cowieson, J. L. Martin, M. Marfori and J. K. Forwood, “Crystallography and Protein-Protein Interactions: Biological Interfaces and Crystal Contacts,” Biochemical Society Transactions, Vol. 36, No. 6, 2008, pp. 1438-1441. doi:10.1042/BST0361438
[18] M. Das, M. Kobayashi, Y. Yamada, S. Sreeramulu, C. Ramakrishnan, S. Wakatsuki, R. Kato and R. Varadarajan, “Design of Disulfide-Linked Thioredoxin Dimers and Multimers through Analysis of Crystal Contacts,” Journal of Molecular Biology, Vol. 372, No. 5, 2007, pp. 1278-1292. doi:10.1016/j.jmb.2007.07.033
[19] C. Charron, D. Kern and R. Giege, “Crystal Contacts Engineering of Aspartyl-tRNA Synthetase from Thermus Thermophilus: Effects on Crystallizability,” Acta Crystallographica Section D: Biological Crystallography, Vol. 58, No. 1, 2002, pp. 1729-1733. doi:10.1107/S0907444902012787
[20] F. L. Zhang and R. Bruschweiler, “Contact Model for the Prediction of NMR N-H Order Parameters in Globular Proteins,” Journal of the American Chemical Society, Vol. 124, No. 43, 2002, pp. 12654-12655. doi:10.1021/ja027847a
[21] D. M. Ming and R. Bruschweiler, “Prediction of Methyl-Side Chain Dynamics in Proteins,” Journal of Biomolecular NMR, Vol. 29, No. 3, 2004, pp. 363-368. doi:10.1023/B:JNMR.0000032612.70767.35
[22] J. K. Song and J. L. Markley, “NMR Chemical Shift Mapping of the Binding Site of a Protein Proteinase Inhibitor: Changes in the H-1, C-13 and N-15 NMR Chemical Shifts of Turkey Ovomucoid Third Domain upon Binding to Bovine Chymotrypsin A (Alpha),” Journal of Molecular Recognition, Vol. 14, No. 3, 2001, pp. 166-171. doi:10.1002/jmr.530
[23] G. T. Montelione, D. Y. Zheng, Y. P. J. Huang, K. C. Gunsalus and T. Szyperski, “Protein NMR Spectroscopy in Structural Genomics,” Nature Structural Biology, Vol. 7, 2000, pp. 982-985. doi:10.1038/80768
[24] T. Terada, Y. Ito, M. Shirouzu, M. Tateno, K. Hashimoto, T. Kigawa, T. Ebisuzaki, K. Takio, T. Shibata, S. Yokoyama, B. O. Smith, E. D. Laue and J. A. Cooper, “Nuclear Magnetic Resonance and Molecular Dynamics Studies on the Interactions of the Ras-Binding Domain of Raf-1 with Wild-Type and Mutant Ras Proteins,” Journal of Molecular Biology, Vol. 286, No. 1, 1999, pp. 219-232. doi:10.1006/jmbi.1998.2472
[25] J. R. Huth, R. Mendoza, E. T. Olejniczak, R. W. Johnson, D. A. Cothron, Y. Y. Liu, C. G. Lerner, J. Chen and P. J. Hajduk, “ALARM NMR: A Rapid and Robust Experimental Method to Detect Reactive False Positives in Biochemical Screens,” Journal of the American Chemical Society, Vol. 127, No. 1, 2005, pp. 217-224. doi:10.1021/ja0455547
[26] P. Rajagopal, E. B. Waygood, J. Reizer, M. H. Saier and R. E. Klevit, “Demonstration of Protein-Protein Interaction Specificity by NMR Chemical Shift Mapping,” Protein Science, Vol. 6, No. 12, 1997, pp. 2624-2627. doi:10.1002/pro.5560061214
[27] M. Schmiedeskamp, P. Rajagopal and R. E. Klevit, “NMR Chemical Shift Perturbation Mapping of DNA Binding by a Zinc-Finger Domain from the Yeast Transcription Factor ADR1,” Protein Science, Vol. 6, No. 9, 1997, pp. 1835-1848. doi:10.1002/pro.5560060904
[28] P. J. Hajduk, “SAR by NMR: Putting the Pieces Together,” Molecular Interventions, Vol. 6, No. 5, 2006, p. 266. doi:10.1124/mi.6.5.8
[29] A. M. Petros, J. R. Huth, T. Oost, C. M. Park, H. Ding, X. L. Wang, H. C. Zhang, P. Nimmer, R. Mendoza, C. H. Sun, J. Mack, K. Walter, S. Dorwin, E. Gramling, U. Ladror, S. H. Rosenberg, S. W. Elmore, S. W. Fesik and P. J. Hajduk, “Discovery of a Potent and Selective Bcl-2 Inhibitor Using SAR by NMR,” Bioorganic & Medicinal Chemistry Letters, Vol. 20, No. 22, 2010, pp. 6587-6591. doi:10.1016/j.bmcl.2010.09.033
[30] M. P. Foster, D. S. Wuttke, K. R. Clemens, W. Jahnke, I. Radhakrishnan, L. Tennant, M. Reymond, J. Chung and P. E. Wright, “Chemical Shift as a Probe of Molecular Interfaces: NMR Studies of DNA Binding by the Three Amino-Terminal Zinc Finger Domains from Transcription Factor IIIA,” Journal of Biomolecular NMR, Vol. 12, No. 1, 1998, pp. 51-71. doi:10.1023/A:1008290631575
[31] P. J. Hajduk, E. T. Olejniczak and S. W. Fesik, “One-Dimensional Relaxation- and Diffusion-Edited NMR Methods for Screening Compounds That Bind to Macromolecules,” Journal of the American Chemical Society, Vol. 119, No. 50, 1997, pp. 12257-12261. doi:10.1021/ja9715962
[32] S. B. Shuker, P. J. Hajduk, R. P. Meadows and S. W. Fesik, “Discovering High-Affinity Ligands for Proteins: SAR by NMR,” Science, Vol. 274, No. 5292, 1996, pp. 1531-1534. doi:10.1126/science.274.5292.1531
[33] J. A. Losonczi, E. T. Olejniczak, S. F. Betz, J. E. Harlan, J. Mack and S. W. Fesik, “NMR Studies of the Anti-Apoptotic Protein Bcl-x(L) in Micelles,” Biochemistry, Vol. 39, No. 36, 2000, pp. 11024-11033. doi:10.1021/bi000919v
[34] I. Bertini, I. C. Felli, L. Gonnelli, R. Pierattelli, Z. Spyranti and G. A. Spyroulias, “Mapping Protein-Protein Interaction by C-13’-Detected Heteronuclear NMR Spectroscopy,” Journal of Biomolecular NMR, Vol. 36, No. 2, 2006, pp. 111-122. doi:10.1007/s10858-006-9068-z
[35] D. Gonzalez-Ruiz and H. Gohlke, “Steering Protein-Ligand Docking with Quantitative NMR Chemical Shift Perturbations,” Journal of Chemical Information and Modeling, Vol. 49, No. 10, 2009, pp. 2260-2271. doi:10.1021/ci900188r
[36] A. V. Chernatynskaya, L. Deleeuw, J. O. Trent, T. Brown and A. N. Lane, “Structural Analysis of the DNA Target Site and Its Interaction with Mbp1,” Organic & Biomolecular Chemistry, Vol. 7, No. 23, 2009, pp. 4981-4991. doi:10.1039/b912309a
[37] Y. M. Xu, J. Lorieau and A. E. McDermott, “Triosephosphate Isomerase: (15)N and (13)C Chemical Shift Assignments and Conformational Change upon Ligand Binding by Magic-Angle Spinning Solid-State NMR Spectroscopy,” Journal of Molecular Biology, Vol. 397, No. 1, 2010, pp. 233-248. doi:10.1016/j.jmb.2009.10.043
[38] C. Fares, I. Amata and T. Carlomagno, “13C-Detection in RNA Bases: Revealing Structure-Chemical Shift Relationships,” Journal of the American Chemical Society, Vol. 129, No. 51, 2007, pp. 15814-15823. doi:10.1021/ja0727417
[39] J. Moriya, M. Sakakura, Y. Tokunaga, R. S. Prosser and I. Shimada, “An NMR Method for the Determination of Protein Binding Interfaces Using TEMPOL-Induced Chemical Shift Perturbations,” Biochimica Et Biophysica Acta-General Subjects, Vol. 1790, No. 10, 2009, pp. 1368-1376. doi:10.1016/j.bbagen.2009.06.001
[40] G. Cornilescu, J. L. Marquardt, M. Ottiger and A. Bax, “Validation of Protein Structure from Anisotropic Carbonyl Chemical Shifts in a Dilute Liquid Crystalline Phase,” Journal of the American Chemical Society, Vol. 120, No. 27, 1998, pp. 6836-6837. doi:10.1021/ja9812610
[41] A. Favier, B. Brutscher, M. Blackledge, A. Galinier, J. Deutscher, F. Penin and D. Marion, “Solution Structure and Dynamics of Crh, the Bacillus Subtilis Catabolite Repression HPr,” Journal of Molecular Biology, Vol. 317, No. 1, 2002, pp. 131-144. doi:10.1006/jmbi.2002.5397
[42] W. T. Franks, B. J. Wylie, H. L. Schmidt, A. J. Nieuwkoop, R. M. Mayrhofer, G. J. Shah, D. T. Graesser and C. M. Rienstra, “Dipole Tensor-Based Atomic-Resolution Structure Determination of a Nanocrystalline Protein by Solid-State NMR,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, No. 12, 2008, pp. 4621-4626. doi:10.1073/pnas.0712393105
[43] W. T. Franks, D. H. Zhou, B. J. Wylie, B. G. Money, D. T. Graesser, H. L. Frericks, G. Sahota and C. M. Rienstra, “Magic-Angle Spinning Solid-State NMR Spectroscopy of the Beta 1 Immunoglobulin Binding Domain of Protein G (GB1): N-15 and C-13 Chemical Shift Assignments and Conformational Analysis,” Journal of the American Chemical Society, Vol. 127, No. 35, 2005, pp. 12291-12305. doi:10.1021/ja044497e
[44] A. M. Gronenborn, D. R. Filpula, N. Z. Essig, A. Achari, M. Whitlow, P. T. Wingfield and G. M. Clore, “A Novel, Highly Stable Fold of the Immunoglobulin Binding Domain of Streptococcal Protein-G,” Science, Vol. 253, No. 5020, 1991, pp. 657-661. doi:10.1126/science.1871600
[45] S. Jehle, B. van Rossum, J. R. Stout, S. M. Noguchi, K. Falber, K. Rehbein, H. Oschkinat, R. E. Klevit and P. Rajagopal, “Alphab-Crystallin: A Hybrid Solid-State/Solution-State NMR Investigation Reveals Structural Aspects of the Heterogeneous Oligomer,” Journal of Molecular Biology, Vol. 385, No. 5, 2009, pp. 1481-1497. doi:10.1016/j.jmb.2008.10.097
[46] A. Loquet, B. Bardiaux, C. Gardiennet, C. Blanchet, M. Baldus, M. Nilges, T. Malliavin and A. Bockmann, “3D Structure Determination of the Crh Protein from Highly Ambiguous Solid-State NMR Restraints,” Journal of the American Chemical Society, Vol. 130, No. 11, 2008, pp. 3579-3589. doi:10.1021/ja078014t
[47] S. Rozovsky, G. Jogl, L. Tong and A. E. McDermott, “Solution-State NMR Investigations of Triosephosphate Isomerase Active Site Loop Motion: Ligand Release in Relation to Active Site Loop Dynamics,” Journal of Molecular Biology, Vol. 310, No. 1, 2001, pp. 271-280. doi:10.1006/jmbi.2001.4673
[48] H. L. Schmidt, L. J. Sperling, Y. G. Gao, B. J. Wylie, J. M. Boettcher, S. R. Wilson and C. M. Rienstra, “Crystal Polymorphism of Protein GB1 Examined by Solid-State NMR Spectroscopy and X-Ray Diffraction,” The Journal of Physical Chemistry B, Vol. 111, No. 51, 2007, pp. 14362-14369. doi:10.1021/jp075531p
[49] M. Schubert, T. Manolikas, M. Rogowski and B. H. Meier, “Solid-State NMR Spectroscopy of 10% 13C Labeled Ubiquitin: Spectral Simplification and Stereospecific Assignment of Isopropyl Groups,” Journal of Biomolecular NMR, Vol. 35, No. 3, 2006, pp. 167-173. doi:10.1007/s10858-006-9025-x
[50] M. Juy, F. Penin, A. Favier, A. Galinier, R. Montserret, R. Haser, J. Deutscher and A. Bockmann, “Dimerization of Crh by Reversible 3D Domain Swapping Induces Structural Adjustments to Its Monomeric Homologue Hpr,” Journal of Molecular Biology, Vol. 332, No. 4, 2003, pp. 767-776. doi:10.1016/S0022-2836(03)00918-5
[51] Schrodinger, LLC, “The PyMOL Molecular Graphics System, Version 1.3r1,” Schrodinger, LLC, New York, 2010.
[52] Y. M. Xu, J. Lorieau and A. E. McDermott, “Triosephosphate Isomerase: N-15 and C-13 Chemical Shift Assignments and Conformational Change upon Ligand Binding by Magic-Angle Spinning Solid-State NMR Spectroscopy,” Journal of Molecular Biology, Vol. 397, No. 1, 2010, pp. 233-248. doi:10.1016/j.jmb.2009.10.043
[53] K.-Y. Huang, “Ubiquitin Conformational Dynamics and Hydration Shell Dynamics by Solid State NMR,” Columbia University, New York, 2011.
[54] J. Catalano, “Ligand-Protein Interactions in Cytochromes,” Columbia University, New York, 2011.
[55] E. Krissinel and K. Henrick, “Inference of Macromolecular Assemblies from Crystalline State,” Journal of Molecular Biology, Vol. 372, No. 3, 2007, pp. 774-797. doi:10.1016/j.jmb.2007.05.022
[56] E. Krissinel and K. Henrick, “Detection of Protein Assemblies in Crystals,” Proceedings of Computational Life Sciences, Vol. 3695, 2005, pp. 163-174. doi:10.1007/11560500_15
[57] E. Krissinel, “Crystal Contacts as Nature’s Docking Solutions,” Journal of Computational Chemistry, Vol. 31, No. 1, 2010, pp. 133-143. doi:10.1002/jcc.21303
[58] K. Chen, L. Kurgan and M. Rahbari, “Prediction of Protein Crystallization Using Collocation of Amino Acid Pairs,” Biochemical and Biophysical Research Communications, Vol. 355, No. 3, 2007, pp. 764-769. doi:10.1016/j.bbrc.2007.02.040
[59] G. Steinkellner, R. Rader, G. G. Thallinger, C. Kratky and K. Gruber, “VASCo: Computation and Visualization of Annotated Protein Surface Contacts,” BMC Bioinformatics, Vol. 10, 2009, p. 32.
[60] V. Sobolev, E. Eyal, S. Gerzon, V. Potapov, M. Babor, J. Prilusky and M. Edelman, “SPACE: A Suite of Tools for Protein Structure Prediction and Analysis Based on Complementarity and Environment,” Nucleic Acids Research, Vol. 33, No. 2, 2005, pp. W39-W43. doi:10.1093/nar/gki398
[61] M. Carrillo-Tripp, C. M. Shepherd, I. A. Borelli, S. Venkataraman, G. Lander, P. Natarajan, J. E. Johnson, C. L. Brooks and V. S. Reddy, “VIPERdb(2): An Enhanced and Web API Enabled Relational Database for Structural Virology,” Nucleic Acids Research, Vol. 37, No. 1, 2009, pp. D436-D442. doi:10.1093/nar/gkn840
[62] Y. Shen and A. Bax, “SPARTA Plus: A Modest Improvement in Empirical NMR Chemical Shift Prediction by Means of an Artificial Neural Network,” Journal of Biomolecular NMR, Vol. 48, No. 1, 2010, pp. 13-22. doi:10.1007/s10858-010-9433-9
[63] P. Mattis, S. Kimball, J. MacDonald, O. Taylor, M. Clasen, F. M. Quintero, S. Sandmann, P. O’Briain, M. Singh, K. Rietveld and T. Lillqvist, “The GIMP Toolkit, GTK2+,” 2006.
[64] L. Wall, “The Perl Programming Language,” 2006.
[65] “Gtk2-Perl Bindings,” Gtk2-Perl Team, 2009.
[66] D. Wegscheid, R. Schertler, J. Hietaniemi and G. Aas, “Time::HiRes Module for Perl,” 2008.
[67] K. Takanori, G. Szabo and J. McNamara, “Spreadsheet::ParseExcel Module for Perl,” 2011.
[68] J. McNamara, “Spreadsheet::WriteExcel Module for Perl,” 2010.
[69] L. D. Stein, “Interface to GD Graphics Library for Perl,” 2010.
[70] T. Boutell, “GD Graphics Library,” 2011.
[71] E. L. Ulrich, H. Akutsu, J. F. Doreleijers, Y. Harano, Y. E. Ioannidis, J. Lin, M. Livny, S. Mading, D. Maziuk, Z. Miller, E. Nakatani, C. F. Schulte, D. E. Tolmie, R. K. Wenger, H. Yao and J. L. Markley, “BioMagResBank,” Nucleic Acids Research, Vol. 36, No. 1, 2008, pp. D402-D408. doi:10.1093/nar/gkm957
[72] D. Freedman, R. Pisani and R. Purves, “Statistics,” W.W. Norton & Co., New York, 2007.
[73] H. B. Mann and D. R. Whitney, “On a Test of Whether One of 2 Random Variables Is Stochastically Larger than the Other,” Annals of Mathematical Statistics, Vol. 18, No. 1, 1947, pp. 50-60. doi:10.1214/aoms/1177730491
[74] D. Bamber, “Area above Ordinal Dominance Graph and Area below Receiver Operating Characteristic Graph,” Journal of Mathematical Psychology, Vol. 12, No. 4, 1975, pp. 387-415. doi:10.1016/0022-2496(75)90001-2
[75] “SPSS Statistics,” SPSS, Inc., Chicago, 2010.
[76] H. Berman, K. Henrick and H. Nakamura, “Announcing the Worldwide Protein Data Bank,” Nature Structural Biology, Vol. 10, No. 12, 2003, pp. 980-980. doi:10.1038/nsb1203-980
[77] N. R. Silvaggi, L. J. Martin, H. Schwalbe, B. Imperiali and K. N. Allen, “Double-Lanthanide-Binding Tags for Macromolecular Crystallographic Structure Determination,” Journal of the American Chemical Society, Vol. 129, No. 22, 2007, pp. 7114-7120. doi:10.1021/ja070481n
[78] S. Vijay-Kumar, C. E. Bugg and W. J. Cook, “Structure of Ubiquitin Refined at 1.8 A Resolution,” Journal of Molecular Biology, Vol. 194, No. 3, 1987, pp. 531-544. doi:10.1016/0022-2836(87)90679-6
[79] K. Y. Huang, G. A. Amodeo, L. Tong and A. McDermott, “The Structure of Human Ubiquitin in 2-Methyl-2, 4-Pentanediol: A New Conformational Switch,” Protein Science, Vol. 20, No. 3, 2011, pp. 630-639. doi:10.1002/pro.584
[80] A. Laganowsky, J. L. Benesch, M. Landau, L. Ding, M. R. Sawaya, D. Cascio, Q. Huang, C. V. Robinson, J. Horwitz and D. Eisenberg, “Crystal Structures of Truncated AlphaA and AlphaB Crystallins Reveal Structural Mechanisms of Polydispersity Important for Eye Lens Function,” Protein Science, Vol. 19, No. 5, 2010, pp. 1031-1043. doi:10.1002/pro.380
[81] U. Samanta, R. P. Bahadur and P. Chakrabarti, “Quantifying the Accessible Surface Area of Protein Residues in Their Local Environment,” Protein Engineering, Vol. 15, No. 8, 2002, pp. 659-667. doi:10.1093/protein/15.8.659
[82] G. B. McGaughey, M. Gagne and A. K. Rappe, “Pi-Stacking Interactions: Alive and Well in Proteins,” Journal of Biological Chemistry, Vol. 273, No. 25, 1998, pp. 15458-15463. doi:10.1074/jbc.273.25.15458
[83] C. H. Robert and J. Janin, “A Soft, Mean-Field Potential Derived from Crystal Contacts for Predicting Protein-Protein Interactions,” Journal of Molecular Biology, Vol. 283, No. 5, 1998, pp. 1037-1047. doi:10.1006/jmbi.1998.2152
[84] R. L Schwartz, “Sorting with the Schwartzian Transform,” 2006.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.