Optimization of Penicillin G Acylase Immobilization Process by Surface Response Methodology Using Central Composite Design

Abstract

Penicillin G acylase was immobilized onto superparamagnetite iron oxide nanoparticles employing response surface methodology through central composite design. Polynomial quadratic model was selected as a model. The value of the determination coefficient (R2) calculated from the quadratic regression model was 0.845, while the value of the adjusted (R2) was 0.74. The regression analysis of the data showed that the quadratic model selected were appropriate thereby enzyme concentration (A), reaction temperature (D), enzyme concentration* reaction temperature (AD), quadratics enzyme concentration (A2) and reaction temperature (D2) were found to be significant factors in immobilization process of penicillin G acylase.

Share and Cite:

A. Mohammad, A. Azim, S. Mona, M. Bahman, S. Gigloo, H. Nemati and N. Dariush, "Optimization of Penicillin G Acylase Immobilization Process by Surface Response Methodology Using Central Composite Design," Applied Mathematics, Vol. 4 No. 1, 2013, pp. 64-69. doi: 10.4236/am.2013.41012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. S. M. Chong and X. S. Zhao, “Design of Large Pore Mesoporous Material for Immobilization of Penicillin G Acylase Biocatalysts,” Catalysis Today, Vol. 93-95, No. 1, 2004, pp. 293-299. doi:10.1016/j.cattod.2004.06.064
[2] D. A. Cecchini, I. Sera, D. Ubiali, M. Terreni and A. M. Albertini, “New Active Site Oriented Glyoxyl-Agarose Derivatives of E. coli Penicillin G Acylase,” BMC Biotechnology, Vol. 7, No. 1, 2007, pp. 54-67. doi:10.1186/1472-6750-7-54
[3] F. Scaramozzino, I. Estruch, P. Rossolillo, M. Terreni and A. M. Albertini, “Improvement of Catalytic Properties of E. coli Penicillin G Acylase on Glyoxyl Agarose by Addition of a Six Amino Acid Tag,” Journal of Applied and Environmental Microbiology, Vol. 71, No. 12, 2005, pp. 8937-8940.
[4] W. S. Adriano, E. H. C. Filho, J. A. Silva, R. L. C. Giordano and R. B. Goncalves, “Optimization of Penicillin G Acylase Multipoint Immobilization onto Glutaraldehyde—Chitosan Beads,” Biotechnology and Applied Biochemistry, Vol. 41, No. 3, 2005, pp. 201-207. doi:10.1042/BA20040061
[5] D. Norouzian, S. Javadpour, N. Moazami and A. Akbarzadeh, “Immobilization of Whole Cell Penicillin G Acylase in Gelatin Open Pore Matrix,” Enzyme and Microbial Technology, Vol. 30, No. 1, 2002, pp. 26-29.
[6] J. Zhao, Y. Wang, G. Luo and S. Zhu, “Immobilization of Penicillin G Acylase on Macro-Mesoporous Silica Sphers,” Bioresource Technology, Vol. 102, No. 2, 2011, pp. 529-535. doi:10.1016/j.biortech.2010.09.076
[7] R. V. Bahulekar, A. A. Prabhune, H. SivaRaman and S. Ponrathnams, “Immobilization of Penicillin G Acylase on Functionalized Macroporous Polymer Beads,” Polymer, Vol. 34, No. 1, 1993, pp. 163-166. doi:10.1016/0032-3861(93)90300-Y
[8] J. Huang, X. Lih, Y. Zheng, Y. Zhong, R. Zhao, X. Gao and H. Yan, “Immobilization of of Penicillin G Acylase on Poly[(Glycidyl Methacrylate)-co-(Glycerol Monomethacrylate)]—Grafted Magnetic Microspheres,” Macromolecular Bioscience, Vol. 8, No. 6, 2008, pp. 508-515.
[9] F. N. Crespilho, R. M. Lost, S. A. Tavarian and O. N. Oliveira, “Enzyme Immobilization on Ag Nanoparticles/Polyaniline Nanocomposite,” Biosensors and Bioelectronics, Vol. 24, No. 10, 2009, pp. 3072-3077. doi:10.1016/j.bios.2009.03.026
[10] B. Gao, X. Wang and Y. Shen, “Studies on Characters of Immobilizing Penicillin G Acylase on a Novel Composite Support,” Biochemical Engineering Journal, Vol. 28, No. 2, 2006, pp. 140-147. doi:10.1016/j.bej.2005.10.007
[11] G. K. Kouassi, J. Lrudayaraj and G. McCarty, “Examination of Cholesterol Oxidase Attachment to Magnetic Nanoparticles,” Journal of Nanobiotechnology, Vol. 3, No. 1, 2005, pp. 1-9. doi:10.1186/1477-3155-3-1
[12] R. V. Lenth, “Response-Surface Methods in R, Using rsm,” Journal of Statistical Software, Vol. 32, No. 7, 2009, pp. 1-17.
[13] Y. J. Hung, C.-C. Peng, J. T. C. Tzen, M.-J. Chen and J.-R. Liu, “Immobilization of Neocallimastix patriciarum Xylanase on Artificial Oil Bodies and Statistical Optimization of Enzyme Activity,” Bioresource Technology, Vol. 99, No. 18, 2008, pp. 8662-8666. doi:10.1016/j.biortech.2008.04.017
[14] A. Guvenc, N. Kapucu, H. Kapucu, O. Aydogan and ü. Mehmetoglu, “Enzymatic Esterification of Isoamyl Alcohol Obtained from Fusel Oil: Optimization by Response Surface Methodology,” Enzyme and Microbial Technology, Vol. 40, No. 4, 2007, pp. 778-785. doi:10.1016/j.enzmictec.2006.06.010
[15] N. Peatciyammal, B. Balachandar, M. D. Kumar, K. Tamilarasan and C.Muthakumaran, “Stastical Optimiza- tion of Enzymatic Hydrolysis of Potato (Solanum Tube- rosum) Starch by Immobilized Enzyme,” International Journal of Chemical and Biological Engineering, Vol. 3, No. 3, 2010, pp. 124-128.
[16] Q. Zhao, J. F. Kennedy, X. Wang, X. Yuan, B. Zhao, Y. Peng and Y. Huang, “Optimization of Ultrasonic Circulation Extraction of Polysaccharide from Asparagus Officinalis Using Response Surface Methodology,” International Journal of Biological Macromolecules, Vol. 49, No. 2, 2011, pp. 181-187. doi:10.1016/j.ijbiomac.04.012

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.