Development of Atmospheric Plasma Sprayed Dielectric Ceramic Coatings for High Efficiency Tubular Ozone Generators
Rainer Gadow, Christian Friedrich, Andreas Killinger, Miriam Floristán
.
DOI: 10.4236/jwarp.2010.29094   PDF    HTML     7,567 Downloads   13,705 Views   Citations

Abstract

Oxidative degradation of hazardous materials by ozone treatment like in sterilization of water, dump waste, pulp bleach and chemical processing, is superior to the traditional chlorine chemistry with respect to by-products and environmental protection. For an efficient and cost effective production of ozone for applications in drinking water and wastewater purification, a new concept of tubular composite material components has been developed. A borosilicate glass tube was coated with a layer system consisting of an intermetallic electrode and a dielectric oxide ceramic surface layer. Thermo-mechanical and dielectric properties are investigated with respect to the use of different thermal spray powders as well as the use of a high and a low energetic atmospheric spray gun. The materials and ozone production system of thermal sprayed ozonizer tubes are described and analyzed.

Share and Cite:

Gadow, R. , Friedrich, C. , Killinger, A. and Floristán, M. (2010) Development of Atmospheric Plasma Sprayed Dielectric Ceramic Coatings for High Efficiency Tubular Ozone Generators. Journal of Water Resource and Protection, 2, 799-808. doi: 10.4236/jwarp.2010.29094.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. A. T. Alsheyaba and A. H. Mu?oz, “Optimisation of Ozone Production for Water and Wastewater Treatment,” Desalination, Vol. 217, No. 1, 2007, pp. 1-7.
[2] F. L. Evans, “Ozone Technology: Current Status,” In: F. L. Evans, Ed., Ozone in Water and Wastewater Treatment, Ann Arbor : Ann Arbor Science Publishers Inc., MI, USA, 1972, pp. 1-13.
[3] R. G. Rice and M. E. Browning, “Ozone Treatment of Industrial Wastewater,” Noyes Data Corporation, Park Ridge, N. Y., USA, 1981.
[4] S. H. Lin and K. L. Yeh, “Looking to Treat Wastewater? Try Ozone,” Chemical Engineering, Vol. 100, No. 5, 1993, pp. 112-116.
[5] S. H. Lin and C. H. Wang, “Industrial Wastewater Treatment in a New Gas-Induced Ozone Reactor,” Journal of Hazardous Materials, Vol. 98, No. 1-3, 2003, pp. 295-309.
[6] F. Gaia and A. Menth,“Neue Hochleistungs-Ozonerzeu ger und ihr Anwendungspotential,” Proceedings 5. Ozon- Weltkongre?, Berlin, 1981, pp. 325-339.
[7] U. Kogelschatz and B. Eliasson, “Die Renaissance Der Stillen Elektrischen Entladung,” Physikalische Bl?tter, Vol. 52, No. 4, 1996, pp. 360-362.
[8] R. Gadow and G. Riege, German patent, Nr. 195 11 001.3, 1995.
[9] M. Hirth, European patent Nr. 0202501B1, 1986.
[10] M. Labrenz, “Elektrische Gasentladung zur Ozonherste- llung,” Ph. D. dissertation, University Aaachen, 1983.
[11] P. Braumann, “über die Erzeugung von Gasentladungen zur Herstellung von Ozon,” Ph. D. dissertation, University Aachen, 1981.
[12] J. Lemmerich, “Die Entdeckung des Ozons und die ersten 100 Jahre Ozonforschung,” Sigma, Berlin, 1990.
[13] Kernforschungszentrum Karlsruhe - Wassertechnologie “Grundwasserschutz durch Ozon,” Kernforschungszent- rum Karlsruhe, Karlsruhe, 21-22, 1980.
[14] U. Kogelschatz, Europ?ische Patentschrift Nr 0019307 A1, 1980.
[15] M. Fischer, Offenlegunggsschrift Nr. DE 41 07 072 A1, 1991.
[16] B. Eliasson and U. Kogelschatz, “Modelling and Applications of Silent Discharge Plasmas,” IEEE Transactions on Plasma Science, Vol. 19, No. 2, 1991, pp. 309-323.
[17] B. Elvers and S. Hawkins, “Encyclopedia of Industrial Chemistry A18,” VHC, 1991.
[18] L. Pawlowski, “The Science and Engineering of Thermal Spray Coatings,” 2nd Edition, John Wiley & Sons Ltd, Chichester, 2008.
[19] P. Fauchais, A. Vardelle and B. Dussoubs, “Quo Vadis Thermal Spray,” Journal of Thermal Spray Technology, Vol. 10, No. 1, 2001, pp. 44-66.
[20] P. Fauchais, “Understanding Plasma Spraying,” Journal of Physics D: Applied Physics, Vol. 37, 2004, pp. 86-108.
[21] R. B. Heimann, “Plasma Spray Coating,” 2nd Edition, Wiley- VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.
[22] A. Ohmori, K.C. Park, M. Inuzuka, Y. Arata, K. Inoue, and N. Iwamoto, “Electrical Conductivity of Plasma-Sprayed Titanium Oxide (rutile) Coatings,” Thin Solid Films, Vol. 201, No. 1, 1991, pp. 1-8.
[23] P. Kofstad, Nonstoichiometry, “Diffusion and Electrical Conductivity in Binary Metal Oxides,” Wiley-Interscience, New York, 1972.
[24] T. Bak, J. Nowotny and C. C. Sorrel, “Electrical Properties of Metal Oxides at Elevated Temperatures,” Key Engineering Materials, Vol. 125-126, 1997, pp. 1-80.
[25] T. F. Bernecki, “Characterizing Thermal Spray Coatings,” Advanced Materials & Processes, Vol. 5, 1992, pp. 23-27.
[26] S. D. Glancy, “Preserving the Microstructure of Thermal Spray Coatings,” Advanced Materials & Processes, Vol. 7, No. 1, 1995, pp. 37-40.
[27] R. McPherson, “Formation of Metastable Phases in Flame and Plasma-Preapared Alumina,” Journal of Material Sciences, Vol. 8, No. 6, 1973, pp. 851-858.
[28] L. Zhao, K. Seemann, A. Fischer and E. Lugscheider, “Study on Atmospheric Plasma Spraying of Al2O3 Using On-Line Particle Monitoring,” Surface and Coating Technologies, Vol. 168, No. 2-3, 2003, pp. 186-190.
[29] P. Chráska, J. Dubsky, K. Neufuss and J. Píacka, “Alumina-Base Plasma-Sprayed Materials Part I: Phase Stability of Alumina and Alumina-Chromia,” Journal of Thermal Spray Technology, Vol. 6, No. 3, 1997, pp. 320-325.
[30] L. Pawlowsky, “The Relationship Between Structure and Dielectric Properties in Plasma-Sprayed Alumina Coatings,” Surface and Coating Technologies, Vol. 35, No. 3-4, 1988, pp. 285-298.
[31] S. Yilmaz, “An Evaluation of Plasma-Sprayed Coatings Based on Al2O3 and Al2O3 13 wt% Tio2 with Bond Coat on Pure Titanium Substrate,” Ceramics International, Vol. 35, No. 5, 2009, pp. 2017-2022.
[32] R. McPherson, “On the Formation of Thermally Sprayed Alumina Coatings,” Journal of Material Sciences, Vol. 15, No. 12, 1980, pp. 3141-3149.
[33] R. Yilmaz, A. O. Kurt, A. Demir and Z. Tatli, “Effects of Tio2 on the Mechanical Properties of the Al2O3 - Tio2 Plasma Sprayed Coating,” Journal of European Ceramic Society, Vol. 27, No. 2-3, 2007, pp. 1319-1323.
[34] L. Golonka and L. Pawlowski, “Ceramic on Metal Substrates Produced by Plasma Spraying for Thick Film Technology,” Electrocomponent Science and Technology, Vol. 10, No. 2-3, 1983, pp. 143-150.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.