Tritium/Helium-3 Dating of River Infiltration:An Example from the Oderbruch Area, Berlin, Germany


The concentrations of tritium, helium isotopes and neon have been measured in groundwater samples from a shallow and deep groundwater system recharged by bank infiltration from the Oder River in northeastern Berlin, Germany. The apparent 3H/3He ages show a distinct variation. They increased from only a few months to >40 years along the flow path. The farthest wells from the river have high concentration of 4He terrigenic which is around 5 × 10?5 (ccSTP/kg). The highest values for stable 3H (3H + 3Hetrit) were encountered at a 2.6 kmdistance from the river.

Share and Cite:

H. El-Gamal, "Tritium/Helium-3 Dating of River Infiltration:An Example from the Oderbruch Area, Berlin, Germany," Journal of Water Resource and Protection, Vol. 5 No. 1, 2013, pp. 46-53. doi: 10.4236/jwarp.2013.51006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Schlosser, M. Stute, C. DOrr, C. Sonntag and K. O. Munnich, “Tritium/3He-Dating of Shallow Groundwater,” Earth and Planetary Science Letters, Vol. 89, No. 3-4, 1988, pp. 353-362. doi:10.1016/0012-821X(88)90122-7
[2] B. Ekwurzel, P. Schlosser,W. M. Smethie, L. N. Plummer, E. Busenberg, R. L. Michel, R. Weppernig and M. Stute, “Dating of Shallow Groundwater: Comparison of the Transient Tracers 3H/3He, Chloroflourocarbons, and 85Kr,” Water Resources Research, Vol. 30, No. 6, 1994, pp. 1693-1708. doi:10.1029/94WR00156
[3] A. Szabo, D. E. Rice, L. N. Plummer, E. Busenberg, S. Drenkard and P. Schlosser, “Age Dating of Ground Water Using Chlorofluorocarbons, Tritium/Helium: 3, and Flow Path Analysis in an Unconfined Aquifer of the New Jersey Coastal Plain,” Water Resources Research, Vol. 32, No. 4, 1996, pp. 1023-1038. doi:10.1029/96WR00068
[4] L. N. Plummer, E. Busenberg, S. Drenkard, P. Scholosser, B. Ekwurzel, R. Weppirnig, J. B. McConnell and R. L. Michel, “Flow of River Water into a Karstic Limestone Aquifer. 2. Dating the Young Fraction in Groundwater Mixtures in the Upper Floridan Aquifer near Valdosta, Georgia,” Applied Geochemistry, Vol. 8, 1988, pp. 1017-1043.
[5] E. Mazor and A.Bosch, “Helium as a Semi-Quantitative Tool for Groundwater Dating in the Range of 104 to 108 Years,” In: Isotopes of Noble Gases as Tracers in Environmental Studies, International Atomic Energy Agency, Vienna, 1992, pp. 163-178.
[6] D. K. Solomon, H. Hunt and R. J. Poreda, “Source of Radiogenic Helium 4 in Shallow Aquifers: Implications for Dating Young Ground-Water,” Water Resources Research, Vol. 32, No. 6, 1996, 1805-1813. doi:10.1029/96WR00600
[7] D. K. Solomon and P. G. Cook, “3H and 3He,” In: P. Cook and A. L. Herczeg, Eds., Environmental Tracers in Subsurface Hydrology, Kluwer Academy, Norwell, 2000, pp. 397-424.
[8] I. N. Tolstikhin and I. L. Kamenskiy, “Determination of Groundwater Ages by the T-3He Method,” Geochemistry International, Vol. 6, 1969, pp. 810-811.
[9] J. Sultenfuβ, W. Roether and M. Rhein, “The Bremen Mass Spectrometric Facility for the Measurement of Helium Isotopes, Neon, and tritium in Water,” IAEA, Vienna, IAEA-CN-119/7, 2004.
[10] D. K. Solomon, R. J. Poreda, S. L. Schiff and J. A. Cherry, “Tritium and Helium 3 as Groundwater Age Tracers in the Borden Aquifer,” Water Resources Research, Vol. 28, No. 3, 1992, pp. 741-755. doi:10.1029/91WR02689
[11] W. Aeschbach-Hertig, P. Schlosser, M. Stute, H. J. Simpson, A. Ludin and J. F. Clark, “A 3H/3He Study of Groundwater Flow in a Fractured Bedrock Aquifer,” Ground Water, Vol. 36, No. 4, 1998, pp. 661-670. doi:10.1111/j.1745-6584.1998.tb02841.x
[12] R. F. Weiss, “The Solubility of Nitrogen, Oxygen and Argon in Water and Seawater,” Deep Sea Research, Vol. 17, 1970, pp. 721-735.
[13] B. B. Benson and D. Krause, “Isotopic Fractionation of Helium during Solution: A Probe for the Liquid State,” Journal of Solution Chemistry, Vol. 9, No. 12, 1980, pp. 895-909. doi:10.1007/BF00646402
[14] M. Ozima and F. A. Podosek, “Noble Gas Geochemistry,” Cambridge University Press, Cambridge, 1983.
[15] R. Bayer, P. Schlosser, G. B?nisch, H. Rupp, F. Zaucker and G. Zimmek, “Performance and Blank Components of a Mass Spectrometric System for Routine Measurement of Helium Isotopes and Tritium by the 3He in Growth Method,” Sitzungsber der Heidelberger Akademie der Wissenschaften, Mathematisch Naturwissenschaftliche Klasse, Jahrgang Springer Verlag. 5, 1989, pp. 241-279.
[16] B. A. Mamyrin and I. N. Tolstikhin, “Helium Isotopes in Nature,” Elsevier, Amsterdam, 1984.
[17] M. Stute, M. Forster, H. Frischkorn, A. Serejo, J. F. Clark, P. Schlosser, W. S. Broecker and G. Bonani, “Cooling of Tropical Brazil (58℃) during the Last Glacial Maximum,” Science, Vol. 269, No. 5222, 1995, pp. 379-383. doi:10.1126/science.269.5222.379
[18] G. Massmann, “Infiltration of River Water into the Groundwater Investigations and Modelling of Hydraulic and Geochemical Processes in the Oderbruch Aquifer, Germany,” Ph.D. Disseration, Free University, Berlin, 2002.
[19] M. Hannemann, “Neue Ergebnisse zur Relief Gestaltung, Stratigraphie und glazigenen Dynamik des Pleistozaens in Ostbrandenburg,” Ph.D. Disseration, Humboldt University, Berlin, 1966.
[20] G. Massmanna, A. Pekdegera and C. Merzb, “Redox Processes in the Oderbruch Polder Groundwater Flow System in Germany,” Applied Geochemistry, Vol. 19, No. 6, 2004, pp. 863-886. doi:10.1016/j.apgeochem.2003.11.006
[21] T. H. E. Heaton and J. C. Vogel, “Excess Air in Groundwater,” Journal of Hydrology, Vol. 50, 1981, pp. 201-216. doi:10.1016/0022-1694(81)90070-6
[22] W. J. Jenkins and W. B. Clarke, “The Distribution of 3He in the Western Atlantic Ocean,” Deep Sea Research, Vol. 23, 1976, pp. 481-494.
[23] S. Kaufman and W. F. Libby, “The Natural Distribution of Tritium,” Physical Review, Vol. 93, No. 6, 1954, pp. 1337-1344. doi:10.1103/PhysRev.93.1337

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.