Physicochemical Characteristics of Some Cameroonian Pozzolans for Use in Sustainable Cement Like Materials

Abstract

In the present study, physico-chemical investigations have been carried out on the possibility of using Cameroonian volcanic or clay pozzolans as raw material for geopolymer or pozzolanic binder. The research had made some suggestive results and conclusions. Powders of less than 100 μm of five sampled pozzolans from volcanic or clay origins have been subjected to chemical and mineralogical analysis, BET specific surface, absolute density, granulometry and pozzolanic activity in solution tests. The results obtained showed that, geopolymers or pozzolanic binders can be produced from samples studied. The samples contain significant amounts of glassy or amorphous phase ready to dissolve in an alkaline solution. The high alkali content of volcanic pozzolans makes them more appropriate for geopolymer application. Clay pozzolans are the easier to grind in order to obtain the appropriate fineness and can be used for both geo- polymers and pozzolanic binders.

Share and Cite:

N. Billong, U. Melo, D. Njopwouo, F. Louvet and J. Bonnet, "Physicochemical Characteristics of Some Cameroonian Pozzolans for Use in Sustainable Cement Like Materials," Materials Sciences and Applications, Vol. 4 No. 1, 2013, pp. 14-21. doi: 10.4236/msa.2013.41003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. J. Shannag and A. Yeginobali, “Properties of Pastes, Mortars and Concretes Containing Natural Pozzolan,” Cement and Concrete Research, Vol. 25, No. 3, 1995, pp. 647-657. doi:10.1016/0008-8846(95)00053-F
[2] G. Barger, E. R. Hansen, M. R. Wood, T. Neary, D. Beach and D. Jaquier, “Production and Use of Calcined Na tural Pozzolans in Concrete,” Cement, Concrete and Aggregates, Vol. 23, No. 2, 2001, pp. 73-80. doi:10.1520/CCA10478J
[3] D. D. Vu, P. Stroeven and V. B. Bui, “Strength and Durability Aspect of Calcined Kaolin-Blended Portland Cement Mortar and Concrete,” Cement and Concrete Composites, Vol. 23, No. 6, 2001, pp. 471-478. doi:10.1016/S0958-9465(00)00091-3
[4] M. Ghrici, E. Kenai and E. Meziane, “Mechanical and Durability Properties of Cement Mortar with Algerian Natural Pozzolan,” Journal of Material Science, Vol. 41, No. 21, 2006, pp. 6956-6972. doi:10.1007/s10853-006-0227-0
[5] N. Kaid, M. Cyr, S. Julien and H. Khelafi, “Durability of Concrete Containing a Natural Pozzolan as Defined by a Performance-Based Approach,” Construction and Building Materials, Vol. 23, No. 12, 2009, pp. 3457-3467. doi:10.1016/j.conbuildmat.2009.08.002
[6] M. J. Shannag, “High Strength Concrete Containing Na tural Pozzolan and Silica Fume,” Cement and Concrete Composites, Vol. 22, No. 6, 2000, pp. 399-406. doi:10.1016/S0958-9465(00)00037-8
[7] R. E. Rodriguez-Camacho and R. Uribe-Afif, “Importance of Using the Natural Pozzolans on Concrete Durability,” Cement and Concrete Research, Vol. 32, No. 12, 2002, pp. 1851-1858. doi:10.1016/S0008-8846(01)00714-1
[8] B. B. Sabir, S. Wild and J. Bai, “Metakaolin and Calcined Clays as Pozzolans for Concrete: A Review,” Cement and Concrete Composites, Vol. 23, No. 6, 2001, pp. 441-454. doi:10.1016/S0958-9465(00)00092-5
[9] J. Tailby and K. J. D. MacKenzie, “Structure and Mechanical Properties of Aluminosilicate Geopolymer Composites with Portland Cement and Its Constituent Minerals,” Cement and Concrete Research, Vol. 40, No. 5, 2010, pp. 787-794. doi:10.1016/j.cemconres.2009.12.003
[10] J. Davidovits, “Geopolymer Chemistry and Applications,” Second Edition, Institut Geopolymère, Paris, 2008.
[11] P. N. Lemougna, K. J. D. MacKenzie and U. F. C. Melo, “Synthesis and Thermal Properties of Inorganic Polymers (Geopolymers) for Structural and Refractory Applications from Volcanic Ash,” Ceramics International, Vol. 37, No. 8, 2011, pp. 3011-3018. doi:10.1016/j.ceramint.2011.05.002
[12] A. Elimbi, H. K. Tchakoute and D. Njopwouo, “Effects of Calcination Temperature of Kaolinite Clays on the Properties of Geopolymer Cements,” Construction and Building Materials, Vol. 25, No. 6, 2011, pp. 2805-2812. doi:10.1016/j.conbuildmat.2010.12.055
[13] H. Neville, H. Stafford and D. Mather, “Lime and Other Alternative Cements,” Intermediate Technology Publica tions, London, 1992.
[14] E. Kamseu, C. Leonelli, D. S. Perera, U. C. Melo and P. N. Lemougna, “Investigation of Volcanic Ash-Based Geo polymers as Potential Building Materials,” Interceram, Vol. 58, No. 2, 2009, pp. 136-140.
[15] C. Leonelli, E. Kamseu, D. N. Boccaccini, U. C. Melo, A. Rizzuti, N. Billong and P. Misselli, “Volcanic Ash as alternative Raw Materials for Traditional Vitrified Ceramic Products,” Advances in Applied Ceramics, Vol. 106, No. 3, 2007, pp. 135-141. doi:10.1179/174367607X159329
[16] O. R. Amougou, “Données Sur les Argiles, Calcaires, Pouzzolanes et Sables au Cameroun,” Bureau de Recher ches Géologiques et Minières, Yaoundé, 1993.
[17] E. Kamseu, C. Leonelli, D. N. Boccaccini, P. Veronesi, P. Miselli, G. Pellacani and U. C. Melo, “Characterisation of Porcelain Compositions Using Two China Clays from Cameroon,” Ceramics International, Vol. 33, No. 5, 2007, pp. 851-857. doi:10.1016/j.ceramint.2006.01.025
[18] C. N. Djangang, E. Kamseu, M. K. Ndikontar, G. L. L. Nana, J. Soro, U. C. Melo, A. Elimbi, P. Blanchart and D. Njopwouo, “Sintering Behavior of Porous Ceramic Kaolin-Corundum Composites: Phase Evolution and Densification,” Materials Science and Engineering, Vol. 528, No. 29-30, 2011, pp. 8311-8318. doi:10.1016/j.msea.2011.07.006
[19] C. Bidjocka, J. Tusset, A. Messi and J. Perra, “Etude et Evaluation de l’Activité Pouzzolanique des Pouzzolanes de Djoungo (Cameroun),” Annales de la Faculté des Sciences de l’Université de Yaoundé, 1993, pp. 133-145.
[20] Ndigui Billong, U.C. Melo, F. Louvet and D. Njopwouo, “Properties of Compressed Lateritic Soil Stabilized with a Burnt Clay-Lime Binder: Effect of Mixture Components,” Construction and Building Materials, Vol. 23, No. 6, 2009, pp. 2457-2460. doi:10.1016/j.conbuildmat.2008.09.017
[21] Ndigui Billong, U. C. Melo, D. Njopwouo, F. Louvet and J. P. Bonnet, “Effect of Mixture Constituents on Properties of Slaked Lime-Metakaolin-Sand Mortars Containing Sodium Hydroxide,” Cement and Concrete Composites, Vol. 31, No. 9, 2009, pp. 658-662.
[22] O. Benoit, “Détermination de l’Activité Pouzzolanique d’Une Pouzzolane Par Voie Chimique,” Bulletin de Liai son des Laboratoires Routiers, Ponts et Chaussées, Vol. 1, No. 26, 1967, pp. D1-D2.
[23] R. Dron and F. Brivot, “Bases Minéralogiques de Sélec tion des Pouzzolanes,” Bulletin de Liaison des Labora toires de Ponts et Chaussées, Vol. 93, 1977, pp. 61-65.
[24] P. C. Aitcin, “High Performance Concrete,” FN Spon, New York, 1998.
[25] W. B. Butler, “A Critical Look at ASTM C 618 and C 311,” Cement, Concrete and Aggregates, Vol. 4, No. 2, 1982, pp. 68-72. doi:10.1520/CCA10230J
[26] Indian Bureau of Standards, “IS 1344, Specification for Burnt Clay Pozzolans,” India, 1968.
[27] J. Millet, R. Hommey and F. Brivot, “Dosage de la Phase Vitreuse dans les Matériaux Pouzzolaniques,” Bulletin de Liaison des Laboratoires de Ponts et Chaussées, Vol. 92, 1977, pp. 101-104.
[28] J. C. Benezet and A. Benhassaine, “The Influence of Particle Size on the Pozzolanic Reactivity of Quartz Powder,” Powder Technology, Vol. 103, No. 1, 1999, pp. 26 29. doi:10.1016/S0032-5910(99)00010-8
[29] S. Caijun, “An Overview on the Activation of Reactivity of Natural Pozzolans,” Canadian Journal of Civil Engineering, Vol. 28, No. 5, 2001, pp. 778-786. doi:10.1139/l01-041
[30] R. Dron, “L’Activité Pouzzolanique,” Bulletin de Liaison des Laboratoires de Ponts et Chaussées, Vol. 93, 1978, pp. 101-104.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.