A brief review on the evolution of GPCR: conservation and diversification

Abstract

G-protein couple receptors (GPCR) possess diversified functions and they comprise a large protein superfamily in cellular signaling. Numerous identification methods for GPCR have been employed and versatile GPCR types are discussed. Although they share conserved transmembrane structural topology, alignment results of all GPCR show no significant sequence similarities. Each GPCR type distributes diversely in different evolutionary hierarchies of eukaryotes, but it has a distinctive boundary in the era of metazoan. The common ancestor of GPCR metabotropic glutamate receptor includes 7-transmembrane structure and venus flytrap module, which is probably evolved from a compound of bacteriorhodopsin and periplasmic binding protein. Many investigations focus on fine structure shaping and GPCR classification. Here, we briefly discuss evolutionary dynamic mechanism of GPCR from the perspective of classification, diversification and conservation.

Share and Cite:

Zhang, Z. , Wu, J. , Yu, J. and Xiao, J. (2012) A brief review on the evolution of GPCR: conservation and diversification. Open Journal of Genetics, 2, 11-17. doi: 10.4236/ojgen.2012.24B003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Josefsson, L. G. (1999) Evidence for kinship between diverse G-protein coupled receptors, Gene. 239, 333-40. doi:/10.1016/S0378-1119(99)00392-3
[2] Zhu, J., Choi, W. S., McCoy, J. G., Negri, A., Naini, S., Li, J., Shen, M., Huang, W., Bougie, D., Rasmussen, M., Aster, R., Thomas, C. J., Filizola, M., Springer, T. A. & Coller, B. S. (2012) Structure-guided design of a high-affinity platelet integrin alphaIIbbeta3 receptor antagonist that disrupts Mg(2)(+) binding to the MIDAS, Science translational medicine. 4, 125ra32.
[3] Zhu, J. M., Zhu, Y. & Liu, R. (2008) Health insurance of ru-ral/township schoolchildren in Pinggu, Beijing: cov-erage rate, determinants, disparities, and sustainability, International journal for equity in health. 7, 23. doi:/10.1186/1475-9276-7-23
[4] Kristiansen, K. (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function, Pharmacology & therapeutics. 103, 21-80. doi:/10.1016/j.pharmthera.2004.05.002
[5] Vassilatis, D. K., Hohmann, J. G., Zeng, H., Li, F., Ranchalis, J. E., Mortrud, M. T., Brown, A., Rodriguez, S. S., Weller, J. R., Wright, A. C., Bergmann, J. E. & Gaitanaris, G. A. (2003) The G protein-coupled receptor repertoires of human and mouse, Proceedings of the National Academy of Sciences of the United States of America. 100, 4903-8. doi:/10.1073/pnas.0230374100
[6] Fredriksson, R., La-gerstrom, M. C., Lundin, L. G. & Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints, Molecular phar-macology. 63, 1256-72. doi:/10.1124/mol.63.6.1256
[7] Cardoso, J. C., Pinto, V. C., Vieira, F. A., Clark, M. S. & Power, D. M. (2006) Evolution of secretin family GPCR members in the metazoa, BMC evolutionary biology. 6, 108. doi:/10.1186/1471-2148-6-108
[8] Fridmanis, D., Fre-driksson, R., Kapa, I., Schioth, H. B. & Klovins, J. (2007) Formation of new genes explains lower intron density in mammalian Rhodopsin G protein-coupled receptors, Molecular phylogenetics and evolution. 43, 864-80. doi:/10.1186/1471-2148-6-108
[9] Cao, J., Huang, S., Qian, J., Huang, J., Jin, L., Su, Z., Yang, J. & Liu, J. (2009) Evolution of the class C GPCR Venus flytrap modules involved positive selected functional divergence, BMC evolutionary biology. 9, 67. doi:/10.1186/1471-2148-9-67
[10] Kurtenbach, S., Mayer, C., Pelz, T., Hatt, H., Leese, F. & Neuhaus, E. M. (2011) Molecular evolution of a chordate specific family of G protein-coupled receptors, BMC evolu-tionary biology. 11, 234. doi:/10.1186/1471-2148-11-234
[11] Nordstrom, K. J., Sallman Almen, M., Edstam, M. M., Fredriksson, R. & Schioth, H. B. (2011) Independent HHsearch, Needleman--Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families, Molecular biology and evolution. 28, 2471-80. doi:/10.1093/molbev/msr061
[12] Krishnan, A., Almen, M. S., Fredriksson, R. & Schioth, H. B. (2012) The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi, PloS one. 7, e29817. doi:/10.1371/journal.pone.0029817
[13] Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic acids research. 25, 3389-402. doi:/10.1093/nar/25.17.3389
[14] Kent, W. J. (2002) BLAT--the BLAST-like alignment tool, Genome research. 12, 656-64. doi:/10.1101/gr.229202
[15] Liu, Q., Zhu, Y. S., Wang, B. H. & Li, Y. X. (2003) A HMM-based method to predict the transmembrane regions of beta-barrel membrane proteins, Computational biology and chemistry. 27, 69-76. doi:/10.1016/S0097-8485(02)00051-7
[16] Becker, E., Cotillard, A., Meyer, V., Madaoui, H. & Guerois, R. (2007) HMM-Kalign: a tool for generating sub-optimal HMM alignments, Bioinformatics. 23, 3095-7. doi:/10.1093/bioinformatics/btm492
[17] Singh, N. K., Goodman, A., Walter, P., Helms, V. & Hayat, S. (2011) TMBHMM: a frequency profile based HMM for predicting the topology of transmembrane beta barrel proteins and the exposure status of transmem-brane residues, Biochimica et biophysica acta. 1814, 664-70. doi:/10.1016/j.bbapap.2011.03.004
[18] Chou, K. C. & Elrod, D. W. (2002) Bioinformatical analysis of G-protein-coupled receptors, Journal of proteome research. 1, 429-33. doi:/10.1021/pr025527k
[19] Elrod, D. W. & Chou, K. C. (2002) A study on the correlation of G-protein-coupled receptor types with amino acid composition, Protein engineering. 15, 713-5. doi:/10.1093/protein/15.9.713
[20] Chou, K. C. (2005) Prediction of G-protein-coupled receptor classes, Journal of proteome research. 4, 1413-8. doi:/10.1021/pr050087t
[21] Karchin, R., Karplus, K. & Haussler, D. (2002) Classifying G-protein coupled receptors with support vector machines, Bioinformatics. 18, 147-59. doi:/10.1093/bioinformatics/18.1.147
[22] Bhasin, M. & Raghava, G. P. (2005) GPCRsclass: a web tool for the classification of amine type of G-protein-coupled re-ceptors, Nucleic acids research. 33, W143-7. doi:/10.1093/nar/gki351
[23] Huang, Y., Cai, J., Ji, L. & Li, Y. (2004) Classifying G-protein coupled receptors with bagging classification tree, Computational biol-ogy and chemistry. 28, 275-80. doi:/10.1016/j.compbiolchem.2004.08.001
[24] Qiu, J. D., Huang, J. H., Liang, R. P. & Lu, X. Q. (2009) Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform, Analytical biochemistry. 390, 68-73. doi:/10.1016/j.ab.2009.04.009
[25] Zhu, J., Negri, A., Provasi, D., Filizola, M., Coller, B. S. & Springer, T. A. (2010) Closed headpiece of integrin alphaIIbbeta3 and its complex with an alphaIIbbeta3-specific anta-gonist that does not induce opening, Blood. 116, 5050-9. doi:/10.1182/blood-2010-04-281154
[26] Davies, M. N., Secker, A., Freitas, A. A., Mendao, M., Timmis, J. & Flower, D. R. (2007) On the hierarchical classification of G protein-coupled receptors, Bioinformatics. 23, 3113-8. doi:/10.1093/bioinformatics/btm506
[27] Wang, R., Zhu, J., Dong, X., Shi, M., Lu, C. & Springer, T. A. (2012) GARP regulates the bioavailability and activation of TGFbeta, Molecular biology of the cell. 23, 1129-39. doi:/10.1091/mbc.E11-12-1018
[28] Kolakowski, L. F., Jr. (1994) GCRDb: a G-protein-coupled receptor database, Receptors & channels. 2, 1-7.
[29] Fredriksson, R. & Schioth, H. B. (2005) The repertoire of G-protein-coupled receptors in fully sequenced ge-nomes, Molecular pharmacology. 67, 1414-25. doi:/10.1124/mol.104.009001
[30] Schioth, H. B. & Fre-driksson, R. (2005) The GRAFS classification system of G-protein coupled receptors in comparative pers-pective, General and comparative endocrinology. 142, 94-101. doi:/10.1016/j.ygcen.2004.12.018
[31] Shi, M., Zhu, J., Wang, R., Chen, X., Mi, L., Walz, T. & Springer, T. A. (2011) Latent TGF-beta structure and activation, Nature. 474, 343-9. doi:/10.1038/nature10152
[32] Zhu, J., Spencer, T. J., Liu-Chen, L. Y., Biederman, J. & Bhide, P. G. (2011) Methylphenidate and mu opioid receptor interactions: a pharmacological target for prevention of stimulant abuse, Neuropharmacology. 61, 283-92. doi:/10.1016/j.neuropharm.2011.04.015
[33] Lu, C., Mi, L. Z., Grey, M. J., Zhu, J., Graef, E., Yokoyama, S. & Springer, T. A. (2010) Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor, Molecular and cellular biology. 30, 5432-43. doi:/10.1128/MCB.00742-10
[34] Zhu, J., Brawarsky, P., Lipsitz, S., Huskamp, H. & Haas, J. S. (2010) Massa-chusetts health reform and disparities in coverage, access and health status, Journal of general internal medicine. 25, 1356-62. doi:/10.1007/s11606-010-1482-y
[35] Pin, J. P., Galvez, T. & Prezeau, L. (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors, Pharmacology & therapeutics. 98, 325-54. doi:/10.1016/S0163-7258(03)00038-X
[36] Secker, A., Davies, M. N., Freitas, A. A., Clark, E. B., Timmis, J. & Flower, D. R. (2010) Hierarchical classification of G-protein-coupled receptors with data-driven selection of attributes and classifiers, International journal of data mining and bioinformatics. 4, 191-210. doi:/10.1504/IJDMB.2010.032150
[37] Schoneberg, T., Hofreiter, M., Schulz, A. & Rompler, H. (2007) Learning from the past: evolution of GPCR functions, Trends in pharmacological sciences. 28, 117-21. doi:/10.1016/j.tips.2007.01.001
[38] Ault, A. D. & Broach, J. R. (2006) Creation of GPCR-based chemical sensors by directed evolution in yeast, Protein engineering, design & selection : PEDS. 19, 1-8.
[39] Biederman, J., Petty, C. R., Spencer, T. J., Woodworth, K. Y., Bhide, P., Zhu, J. & Faraone, S. V. (2012) Examining the nature of the comorbidity between pediatric attention deficit/hyperactivity disorder and post-traumatic stress disorder, Acta psychiatrica Scandinavica. doi:/10.1111/acps.12011
[40] Strotmann, R., Schrock, K., Boselt, I., Staubert, C., Russ, A. & Schoneberg, T. (2011) Evolution of GPCR: change and continuity, Molecular and cellular endocrinology. 331, 170-8. doi:/10.1016/j.mce.2010.07.012
[41] Fredriksson, R., Gloriam, D. E., Hoglund, P. J., Lagerstrom, M. C. & Schioth, H. B. (2003) There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini, Biochemical and biophysical research communications. 301, 725-34. doi:/10.1016/S0006-291X(03)00026-3
[42] Graul, R. C. & Sadee, W. (2001) Evolutionary relationships among G protein-coupled receptors using a clustered database approach, AAPS pharmSci. 3, E12. doi:/10.1208/ps030212
[43] Gloriam, D. E., Bjarnadottir, T. K., Yan, Y. L., Postlethwait, J. H., Schioth, H. B. & Fredriksson, R. (2005) The repertoire of trace amine G-protein-coupled receptors: large expansion in ze-brafish, Molecular phylogenetics and evolution. 35, 470-82. doi:/10.1016/j.ympev.2004.12.003
[44] Churcher, A. M. & Taylor, J. S. (2011) The antiquity of chordate odorant receptors is revealed by the discovery of or-thologs in the cnidarian Nematostella vectensis, Ge-nome biology and evolution. 3, 36-43. doi:/10.1093/gbe/evq079
[45] Bengtson, S., Belivanova, V., Rasmussen, B. & Whitehouse, M. (2009) The controversial "Cambrian" fossils of the Vindhyan are real but more than a billion years older, Proceedings of the National Academy of Sciences of the United States of America. 106, 7729-34. doi:/10.1073/pnas.0812460106
[46] Brundrett, M. C. (2002) Coevolution of roots and mycorrhizas of land plants, New Phytologist. 154: 275–304. doi:/10.1046/j.1469-8137.2002.00397.x
[47] Trumpp-Kallmeyer, S., Hoflack, J., Bruinvels, A. & Hibert, M. (1992) Modeling of G-protein-coupled receptors: ap-plication to dopamine, adrenaline, serotonin, acetyl-choline, and mammalian opsin receptors, Journal of medicinal chemistry. 35, 3448-62. doi:/10.1021/jm00097a002
[48] Zhang, D. & Weinstein, H. (1994) Polarity conserved positions in transmem-brane domains of G-protein coupled receptors and bacteriorhodopsin, FEBS letters. 337, 207-12. doi:/10.1016/0014-5793(94)80274-2
[49] Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. (1996) Electron-crystallographic re-finement of the structure of bacteriorhodopsin, Journal of molecular biology. 259, 393-421. doi:/10.1006/jmbi.1996.0328
[50] Palczewski, K., Ku-masaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M. & Miyano, M. (2000) Crystal structure of rhodopsin: A G protein-coupled receptor, Science. 289, 739-45. doi:/10.1126/science.289.5480.739
[51] Taylor, E. W. & Agarwal, A. (1993) Sequence homology between bacteriorhodopsin and G-protein coupled receptors: exon shuffling or evolution by duplication?, FEBS letters. 325, 161-6. doi:/10.1016/0014-5793(93)81065-8
[52] Oesterhelt, D. (1998) The structure and mechanism of the family of retinal proteins from halophilic archaea, Current opi-nion in structural biology. 8, 489-500. doi:/10.1016/S0959-440X(98)80128-0
[53] Fuhrman, J. A., Schwalbach, M. S. & Stingl, U. (2008) Proteorhodopsins: an array of physiological roles?, Nature reviews Microbiology. 6, 488-94.
[54] Felder, C. B., Graul, R. C., Lee, A. Y., Merkle, H. P. & Sadee, W. (1999) The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors, AAPS pharmSci. 1, E2. doi:/10.1208/ps010202
[55] Zhu, J., Gaiha, G. D., John, S. P., Pertel, T., Chin, C. R., Gao, G., Qu, H., Walker, B. D., Elledge, S. J. & Brass, A. L. (2012) Reactiva-tion of Latent HIV-1 by Inhibition of BRD4, Cell reports. 2, 807-16.
[56] O'Hara, P. J., Sheppard, P. O., Thogersen, H., Venezia, D., Haldeman, B. A., McGrane, V., Houamed, K. M., Thomsen, C., Gilbert, T. L. & Mulvihill, E. R. (1993) The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins, Neuron. 11, 41-52. doi:/10.1016/0896-6273(93)90269-W

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.