Bifurcation and Pattern Recognition
Yehuda Roth
Oranim Academic College, Kiryat Tivon, Israel.
DOI: 10.4236/jmp.2013.41005   PDF   HTML   XML   3,114 Downloads   5,137 Views   Citations


We propose a new approach in dealing with image recognition. We suggest that recognizing an image is related to the knowledge of a pure quantum state. Since most images are screened through incoherent photons, we introduce a method base on non-linear mapping iterations to regenerate coherence between the image photons.

Share and Cite:

Y. Roth, "Bifurcation and Pattern Recognition," Journal of Modern Physics, Vol. 4 No. 1, 2013, pp. 25-29. doi: 10.4236/jmp.2013.41005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Schanz, T. Dittrich and R. Ketzmerick, “Directed Chaotic Transport in Hamiltonian Ratchets,” Physical Review E, Vol. 71, No. 2, 2005, Article ID: 026228. Hdoi:10.1103/PhysRevE.71.026228
[2] W. H. Zurek, “Decoherence, Einselection, and the Quantum Origins of the Classical,” Reviews of Modern Physics, Vol. 75, No. 3, 2003, pp. 715-775. Hdoi:10.1103/RevModPhys.75.715
[3] W. H. Zurek, “Decoherence and the Transition from Quantum to Classical,” Physics Today, Vol. 44, No. 10, 1991, p. 36. Hdoi:10.1063/1.881293
[4] Y. Roth, “The Quantum Observer’s Consciousness,” EPL, Vol. 82, 2008, Article ID: 10006.
[5] Y. Roth, “The Observer Determination,” International Journal of Theoretical Physics, Vol. 51, No. 12, 2012, pp. 3847-3855.
[6] R. Penrose, “The Road to Reality: A Complete Guide to the Laws of the Universe,” Vintage Books, New York, 2004.
[7] A. Bassi, “Dynamical Reduction Models: Present Status and Future Developments,” Journal of Physics: Conference Series, Vol. 67, 2007, Article ID: 012013.
[8] A. Bassi and D. G. M. Salvetti, “The Quantum Theory of Measurement within Dynamical Reduction Models,” Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 32, 2007, p. 9859. Hdoi:10.1088/1751-8113/40/32/011
[9] W. H. Zurek, “Decoherence and the Transition from Quantum to Classical,” Physics Today, Vol. 44, 1991, pp. 36-44. arXiv: quant-ph/0306072v1.
[10] S. L. Adler, et al., “Collapse Models with Non-White Noises,” Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 50, 2007, pp. 15083-15098. Hdoi:10.1088/1751-8113/40/50/012
[11] G. C. Ghirardi, A. Rimini and T. Weber, “Unified Dynamics for Microscopic and Macroscopic Systems,” Phy- sical Review D, Vol. 34, No. 2, 1986, pp. 470-491.
[12] J. D. Crawford, “Introduction to Bifurcation Theory,” Reviews of Modern Physics, Vol. 63, No. 4, 1991, pp. 991-1037. Hdoi:10.1103/RevModPhys.63.991
[13] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, “Determining Lyapunov Exponents from a Time Series,” Physica D, Vol. 16, No. 3, 1985, pp. 285-317. Hdoi:10.1016/0167-2789(85)90011-9
[14] A. Y. Vlasov, 1996. arXiv:quant-ph/9703010
[15] D. Deutsch, “Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer,” Proceedings of the Royal Society A, Vol. 400, No. 1818, 1985, pp. 97-117. Hdoi:10.1098/rspa.1985.0070
[16] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, 2000.
[17] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, “From Data Mining to Knowledge Discovery in Databases,”AI Magazine, Vol. 17, No. 3, 1996, pp. 37-54.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.