Heavy Neutrinos, Z' and Higgs Bosons at the LHC: New Particles from an Old Symmetry

Abstract

A new era in particle physics is being spurred on by new data from the Large Hadron Collider. Non-vanishing neutrino masses represent firm observational evidence of new physics beyond the Standard Model. An extension of the latter, based on a SU(3)C × SU(2)L × U(1)Y × U(1)B-L symmetry, incorporating an established Baryon minus Lepton number invariance, is proposed as a viable and testable solution to the neutrino mass problem. We argue that LHC data will probe all the new content of this model: heavy neutrinos, an extra gauge boson emerging from spontaneous breaking of the additional gauge group at the TeV scale, onset by a new heavier Higgs boson, also visible at the CERN proton-proton collider. An even more exciting version of this model is the one exploiting Supersymmetry: firstly, it incurporates all its well-known benefits; secondly, it alleviates the flaws of its more minimal realisations. Finally, this model provides a credible cold Dark Matter candidate, the lightest sneutrino, detectable in both underground and collider experiments.

Share and Cite:

S. Khalil and S. Moretti, "Heavy Neutrinos, Z' and Higgs Bosons at the LHC: New Particles from an Old Symmetry," Journal of Modern Physics, Vol. 4 No. 1, 2013, pp. 7-10. doi: 10.4236/jmp.2013.41002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. L. Smith, “Perspective How the LHC Came to Be,” Nature, Vol. 448, 2007, pp. 281-284.
[2] M. Gell-Mann, P. Ramond and R. Slansky, “Complex Spinors and Unified Theories,” In: D. Freedman, et al., Eds., Supergravity, 1979.
[3] T. Yanagida, “Horizontal Gauge Symmetry and Masses of Neutrinos,” Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba, 13-14 February 1979.
[4] R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation,” Physical Review Letters, Vol. 44, No. 14, 1980, pp. 912-915. doi:10.1103/PhysRevLett.44.912
[5] J. R. Ellis, “Beyond the Standard Model with the LHC,” Nature, Vol. 448, 2007, pp. 297-301.
[6] E. E. Jenkins, “Searching for a (B-L) gauge Boson in p Anti-p Collisions,” Physics Letters B, Vol. 192, No. 1-2, 1987, pp. 219-222. doi:10.1016/0370-2693(87)91172-5
[7] W. Buchmuller, C. Greub and P. Minkowski, “Neutrino Masses, Neutral Vector Bosons and the Scale of B-L Breaking,” Physics Letters B, Vol. 267, No. 3, 1991, pp. 395-399. doi:10.1016/0370-2693(91)90952-M
[8] S. Khalil, “Low Scale B-L Extension of the Standard Model at the LHC,” Journal of Physics G, Vol. 35, No. 5, 2008, Article ID: 055001. doi:10.1088/0954-3899/35/5/055001
[9] L. Basso, A. Belyaev, S. Moretti and C. H. Shepherd-Themistocleous, “Phenomenology of the Minimal B-L Extension of the Standard Model: Z' and Neutrinos,” Physical Review D, Vol. 80, No. 5, 2009, Article ID: 055030. doi:10.1103/PhysRevD.80.055030
[10] S. Khalil and A. Masiero, “Radiative B-L Symmetry Breaking in Supersymmetric Models,” Physical Letters B, Vol. 665, No. 5, 2008, pp. 374-377. doi:10.1016/j.physletb.2008.06.063
[11] S. P. Martin, “A Supersymmetry Primer,” arXiv:hep-ph/ 9709356.
[12] S. Khalil, “TeV Scale Gauged B-L Symmetry with Inverse Seesaw Mechanism,” Physical Review D, Vol. 82, No. 7, 2010, Article ID: 077702. doi:10.1103/PhysRevD.82.077702
[13] R. N. Mohapatra, “Mechanism for Understanding Small Neutrino Mass in Superstring Theories,” Physical Review Letters, Vol. 56, No. 6, 1986, pp. 561-563. doi:10.1103/PhysRevLett.56.561
[14] R. N. Mohapatra and J. W. F. Valle, “Neutrino Mass and Baryon-Number Nonconservation in Superstring Models,” Physcial Review D, Vol. 34, No. 5, 1986, pp. 1642-1645. doi:10.1103/PhysRevD.34.1642
[15] K. Huitu, S. Khalil, H. Okada and S. K. Rai, “Signatures for Right-Handed Neutrinos at the Large Hadron Collider,” Physical Review Letters, Vol. 101, No. 18, 2008, Article ID: 181802. doi:10.1103/PhysRevLett.101.181802
[16] W. Emam and S. Khalil, “Higgs and Z-Prime Phenomenology in B-L Extension of the Standard Model at LHC,” The European Physical Journal C, Vol. 52, No. 3, 2007, pp. 625-633. doi:10.1140/epjc/s10052-007-0411-7
[17] L. Basso, A. Belyaev, S. Moretti and G. M. Pruna, “Higgs Phenomenology in the Minimal B-L Extension of the Standard Model at LHC,” J. Phys. Conf. Ser, Vol. 259, No. 1, 2010, Article ID: 012062. doi:10.1088/1742-6596/259/1/012062
[18] L. Basso, S. Moretti and G. M. Pruna, “Phenomenology of the Minimal B-L Extension of the Standard Model: The Higgs Sector,” Physical Review D, Vol. 83, No. 5, 2011, Article ID: 055014. doi:10.1103/PhysRevD.83.055014
[19] P. F. Perez, T. Han and T. Li, “Testability of Type I Seesaw at the CERN LHC Revealing the Existence of the B-L Symmetry,” Physical Review D, Vol. 80, No. 7, 2009, Article ID: 073015. doi:10.1103/PhysRevD.80.073015
[20] J. A. Aguilar-Saavedra, “Heavy Lepton Pair Production at LHC: Model Discrimination with Multi-Lepton Signals,” Nuclear Physics B, Vol. 828, No. 1-2, 2010, pp. 289-316. doi:10.1016/j.nuclphysb.2009.11.021
[21] S. K. Majee and N. Sahu, “Dilepton Signal of a Type-II Seesaw at CERN LHC: Reveals a TeV Scale B-L Symmetry,” Physical Review D, Vol. 82, No. 5, 2010, Article ID: 053007. doi:10.1103/PhysRevD.82.053007
[22] A. Elsayed, S. Khalil and S. Moretti, “Higgs Mass Corrections in the SUSY B-L Model with Inverse Seesaw,” Physics Letters B, Vol. 715, No. 1-3, 2012, pp. 208-213. doi:10.1016/j.physletb.2012.07.066
[23] CMS Collaboration, “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC,” Physics Letters B, Vol. 716, No. 1, 2012, pp. 30-61.
[24] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Physics Letters B, Vol. 716, No. 1, 2012, pp. 1-29. doi:10.1016/j.physletb.2012.08.020

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.