MUC2 mRNA detection in peripheral blood and bone marrow of breast cancer patients reveals micrometastasis


Tumor dissemination to distant organ is the main cause of death. Therefore there is urgent need to set up sensitive methods for early detection of circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) in peripheral blood (PB) and bone marrow (BM) specimens of breast cancer patients. We aim to detect MUC2 mRNA positive cells in PB and BM of breast cancer patients; to relate this to patient relapse. In this study to detect MUC2 mRNA positive cells (tumor marker), PB and BM samples were collected from 50 breast cancer patients after operation and before adjuvant therapy with 20 PB from healthy individuals as negative controls. Chi-square test was used to analyze data. MUC2 mRNA by using Real-time PCR was detected in 9 (18%) of PB and in 10 (20%) of BM samples and none of the healthy individuals. The relapse rate among MUC2-positive patients was significance in BM (P < 0.004) and MUC2-positive patients had a shorter disease free survival than the negative patients in BM samples (p < 0.05). This study shows MUC2 can be a suitable marker for detection of micrometastasis in breast cancer patients at early stages of cancer.

Share and Cite:

Khazan, N. , Ghavamzadeh, A. , Boyajyan, A. , Mkrtchyan, G. , Alimoghaddam, K. and Ghaffari, S. (2013) MUC2 mRNA detection in peripheral blood and bone marrow of breast cancer patients reveals micrometastasis. Natural Science, 5, 38-43. doi: 10.4236/ns.2013.51006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D. (2011) Global cancer statistics. CA: Cancer Journal for Clinicians, 61, 69-90. doi:10.3322/caac.20107
[2] Mousavi, S.M., Gouya, M.M., Ramazani, R., Davanlou, M., Hajsadeghi, N. and Seddighi, Z. (2009) Cancer incidence and mortality in Iran. Annals of Oncology, 20, 556-563. doi:10.1093/annonc/mdn642
[3] Harirchi, I., Kolahdoozan, S., Karbakhsh, M., Chegini, N., Mohseni, S.M., Montazeri, A., Momtahen, A.J., Kashefi, A. and Ebrahimi, M. (2011) Twenty years of breast cancer in Iran: Downstaging without a formal screening program. Annals of Oncology, 22, 93-97. doi:10.1093/annonc/mdq303
[4] Heimann, R. and Hellman, S. (2000) Clinical progression of breast cancer malignant behavior: What to expect and when to expect it. Journal of Clinical Oncology, 18, 591- 599.
[5] Vincent-Salomon, A., Bidard, F.C. and Pierga, J.Y. (2008) Bone marrow micrometastasis in breast cancer: Review of detection methods, prognostic impact and biological issues. Journal of Clinical Pathology, 61, 570-576. doi:10.1136/jcp.2007.046649
[6] Slade, M.J., Singh, A., Smith, B.M., Tripuraneni, G., Hall, E., Peckitt, C., Fox, S., Graham, H., Luchtenborg, M., Sinnett, H.D., Cross, N.C. and Coombes, R.C. (2005) Persistence of bone marrow micrometastases in patients receiving adjuvant therapy for breast cancer: Results at 4 years. International Journal of Cancer, 114, 94-100. doi:10.1002/ijc.20655
[7] Benoy, I.H., Elst, H., Philips, M., Wuyts, H., Van Dam, P., Scharpe, S., Van Marck, E., Vermeulen, P.B. and Dirix, L.Y. (2006) Real-time RT-PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. British Journal of Cancer, 94, 672-680.
[8] Mukhopadhyay, P., Chakraborty, S., Ponnusamy, M.P., Lakshmanan, I., Jain, M. and Batra, S.K. (2011) Mucins in the pathogenesis of breast cancer: Implications in diagnosis, prognosis and therapy. Biochimica et Biophysica Acta, 1815, 224-240.
[9] Hollingsworth, M.A. and Swanson, B.J. (2004) Mucins in cancer: Protection and control of the cell surface. Nature Reviews Cancer, 4, 45-60. doi:10.1038/nrc1251
[10] Gum Jr., J.R., Hicks, J.W., Toribara, N.W., Siddiki, B., and Kim, Y.S. (1994) Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to preprovon Willebrand factor. Journal of Biological Chemistry, 269, 2440-2446.
[11] Kufe, D.W. (2009) Mucins in cancer: Function, prognosis and therapy. Nature Reviews Cancer, 9, 874-885. doi:10.1038/nrc2761
[12] Rakha, E.A., Boyce, R.W., Abd El-Rehim, D., Kurien, T., Green, A.R., Paish, E.C., Robertson, J.F. and Ellis, I.O. (2005) Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Modern Pathology, 18, 1295-1304. doi:10.1038/modpathol.3800445
[13] Walsh, M.D., McGuckin, M.A., Devine, P.L., Hohn, B.G., and Wright, R.G. (1993) Expression of MUC2 epithelial mucin in breast carcinoma. Journal of Clinical Pathology, 46, 922-925. doi:10.1136/jcp.46.10.922
[14] Diaz, L.K., Wiley, E.L. and Morrow, M. (2001) Expression of epithelial mucins Muc1, Muc2, and Muc3 in ductal carcinoma in situ of the breast. Breast Journal, 7, 40-45. doi:10.1046/j.1524-4741.2001.007001040.x
[15] Berois, N., Varangot, M., Sonora, C., Zarantonelli, L., Pressa, C., Lavina, R., Rodriguez, J.L., Delgado, F., Porchet, N., Aubert, J.P. and Osinaga, E. (2003) Detection of bone marrow-disseminated breast cancer cells using an RT-PCR assay of MUC5B mRNA. International Journal of Cancer, 103, 550-555. doi:10.1002/ijc.10853
[16] Schmittgen, T.D. and Livak, K.J. (2008) Analyzing realtime PCR data by the comparative CT method. Nature Protocols, 3, 1101-1108. doi:10.1038/nprot.2008.73
[17] Braun, S., Vogl, F.D., Naume, B., Janni, W., Osborne, M.P., Coombes, R.C., Schlimok, G., Diel, I.J., Gerber, B., Gebauer, G., Pierga, J.Y., Marth, C., Oruzio, D., Wiedswang, G., Solomayer, E.F., Kundt, G., Strobl, B., Fehm, T., Wong, G.Y., Bliss, J., Vincent-Salomon, A. and Pantel, K. (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. The New England Journal of Medicine, 353, 793-802. doi:10.1056/NEJMoa050434
[18] Mitas, M., Mikhitarian, K., Walters, C., Baron, P.L., Elliott, B.M., Brothers, T.E., Robison, J.G., Metcalf, J.S., Palesch, Y.Y., Zhang, Z., Gillanders, W.E. and Cole, D.J. (2001) Quantitative real-time RT-PCR detection of breast cancer micrometastasis using a multigene marker panel. International Journal of Cancer, 93, 162-171. doi:10.1002/ijc.1312
[19] Nogi, H., Takeyama, H., Uchida, K., Agata, T., Horiguchi-Yamada, J. and Yamada, H. (2003) Detection of MUC1 and keratin 19 mRNAs in the bone marrow by quantitative RT-PCR predicts the risk of distant metastasis in breast cancer patients. Breast Cancer, 10, 74-81. doi:10.1007/BF02967629
[20] Ismail, M.S., Wynendaele, W., Aerts, J.L., Paridaens, R., Gaafar, R., Shakankiry, N., Khaled, H.M., Christiaens, M.R., Wildiers, H., Omar, S., Vandekerckhove, P. and Van Oosterom, A.T. (2004) Detection of micrometastatic disease and monitoring of perioperative tumor cell dissemination in primary operable breast cancer patients using real-time quantitative reverse transcription-PCR. Clinical Cancer Research, 10, 196-201. doi:10.1158/1078-0432.CCR-0515-2
[21] Daskalaki, A., Agelaki, S., Perraki, M., Apostolaki, S., Xenidis, N., Stathopoulos, E., Kontopodis, E., Hatzidaki, D., Mavroudis, D. and Georgoulias, V. (2009) Detection of cytokeratin-19 mRNA-positive cells in the peripheral blood and bone marrow of patients with operable breast cancer. British Journal of Cancer, 101, 589-597. doi:10.1038/sj.bjc.6605183
[22] Pierga, J.Y., Bonneton, C., Vincent-Salomon, A., de Cremoux, P., Nos, C., Blin, N., Pouillart, P., Thiery, J.P. and Magdelenat, H. (2004) Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clinical Cancer Research, 10, 1392-1400. doi:10.1158/1078-0432.CCR-0102-03
[23] Muller, V., Stahmann, N., Riethdorf, S., Rau, T., Zabel, T., Goetz, A., Janicke, F. and Pantel, K. (2005) Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clinical Cancer Research, 11, 3678-3685. doi:10.1158/1078-0432.CCR-04-2469
[24] Wiedswang, G., Borgen, E., Schirmer, C., Karesen, R., Kvalheim, G., Nesland, J.M. and Naume, B. (2006) Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. International Journal of Cancer, 118, 2013-2019. doi:10.1002/ijc.21576
[25] Schoenfeld, A., Kruger, K.H., Gomm, J., Sinnett, H.D., Gazet, J.C., Sacks, N., Bender, H.G., Luqmani, Y. and Coombes, R.C. (1997) The detection of micrometastases in the peripheral blood and bone marrow of patients with breast cancer using immunohistochemistry and reverse transcriptase polymerase chain reaction for keratin 19. European Journal of Cancer, 33, 854-861. doi:10.1016/S0959-8049(97)00014-2
[26] Stathopoulou, A., Vlachonikolis, I., Mavroudis, D., Perraki, M., Kouroussis, C., Apostolaki, S., Malamos, N., Kakolyris, S., Kotsakis, A., Xenidis, N., Reppa, D. and Georgoulias, V. (2002) Molecular detection of cytokeratin19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. Journal of Clinical Oncology, 20, 3404-3412. doi:10.1200/JCO.2002.08.135
[27] Ignatiadis, M., Xenidis, N., Perraki, M., Apostolaki, S., Politaki, E., Kafousi, M., Stathopoulos, E.N., Stathopoulou, A., Lianidou, E., Chlouverakis, G., Sotiriou, C., Georgoulias, V. and Mavroudis, D. (2007) Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. Journal of Clinical Oncology, 25, 5194-5202. doi:10.1200/JCO.2007.11.7762
[28] Farmen, R.K., Nordgard, O., Gilje, B., Shammas, F.V., Kvaloy, J.T., Oltedal, S. and Heikkila, R. (2008) Bone marrow cytokeratin 19 mRNA level is an independent predictor of relapse-free survival in operable breast cancer patients. Breast Cancer Research and Treatment, 108, 251-258. doi:10.1007/s10549-007-9592-x

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.