Share This Article:

Nitrification of Reactively Magnetron Sputter Deposited Ti-Cu Nano-Composite Thin Films

Abstract Full-Text HTML XML Download Download as PDF (Size:6732KB) PP. 14-21
DOI: 10.4236/snl.2013.31004    9,133 Downloads   11,989 Views   Citations
Author(s)    Leave a comment

ABSTRACT

A metalloid Ti13Cu87 target was sputtered by reactive DC magnetron sputtering at various substrate temperatures in an Ar-N2 mixture ambient. The sputtered species were condensed on Si (111), glass slide and Potsssium bromide (KBr) substrates. The as-deposited films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), optical spectrophotometry and four point probe technique. The as-deposited films present composite structure of nano-crystallite cubic anti-ReO3 structure of Ti inserted Cu3N (Ti:Cu3N) and nano-crystallite face centre cubic (fcc) structure of Cu. The titanium atoms and sequential nitrogen excess form a solid solution within the Cu3N crystal structure and accommodate in crystal lattice and vacant interstitial site, respectively. Depending on substrate temperature, unreacted N atoms interdiffuse between crystallites and their (and grain) boundaries. The films have agglomerated structure with atomic Ti:Cu ratio less than that of the original targets. A theoretical model has been developed, based on sputtering yield, to predict the atomic Ti:Cu ratio for the as-deposited films. Film thickness, refractive index and extinction coefficient are extracted from the measured transmittance spectra. The films’ resistivity is strongly depending on its microstructural features and substrate temperature.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Rahmati, "Nitrification of Reactively Magnetron Sputter Deposited Ti-Cu Nano-Composite Thin Films," Soft Nanoscience Letters, Vol. 3 No. 1, 2013, pp. 14-21. doi: 10.4236/snl.2013.31004.

References

[1] J. Musil, “Magnetron Sputtering of Alloy and Alloy- Based Films,” Thin Solid Films, Vol. 343-344, 1999, pp. 47-50. doi:10.1016/S0040-6090(98)01567-3
[2] Y. F. Ding and C. Alexander Jr., “Effects of Ti on N Dis- tribution and Diffusion in FeTiN Thin Films,” IEEE Transactions on Magnetics, Vol. 42, No. 1, 2006, pp. 5- 11. doi:10.1109/TMAG.2005.860129
[3] J. F. Pierson, E. Tomasella and Ph. Bauer, “Reactively Sputtered Ti-B-N Nanocomposite Films: Correlation be- tween Structure and Optical Properties,” Thin Solid Films, Vol. 408, No. 1-2, 2002, pp. 26-32. doi:10.1016/S0040-6090(02)00071-8
[4] P. Zeman, R. Cerstvy and P. H. Mayerhofer, “Structure and Properties of Hard and Superhard Zr-Cu-N Nanocomposite Coatings,” Materials Science and Engineering: A, Vol. 239, No. 1-2, 2000, pp. 189-197. doi:10.1016/S0921-5093(00)00917-5
[5] J. Musil and H. Polakova, “Hard Nanocomposite Zr-Y-N Coatings, Correlation between Hardness and Structure,” Surface and Coatings Technology, Vol. 127, No. 1, 2000, pp. 99-106. doi:10.1016/S0257-8972(00)00560-0
[6] N. N. Iosad, N. M. Van der Pers and S. Grachev, “Tex- ture Formation in Sputter-Deposited (Nb0.7,Ti0.3)N Thin Films,” Journal of Applied Physics, Vol. 92, No. 9, 2002, p. 4999. doi:10.1063/1.1510589
[7] H. Maezawa, T. Sato and T. Noguchi, “Process Simula- tion of Reactive DC Magnetron Sputtering for Thin Film Deposition of Niobium-Titanium Nitride,” IEEE Trans- actions on Applied Superconductivity, Vol. 15, No. 2, 2005, pp. 3520-3523. doi:10.1109/TASC.2005.849027
[8] P. Scardi, Y. H. Dong and C. Tosi, “Co, Ni-Base Alloy Thin Films Deposited by Reactive Radio Frequency Mag- netron Sputtering,” Journal of Vacuum Science & Tech- nology A, Vol. 19, No. 5, 2001, p. 2394 doi:10.1116/1.1385907
[9] L. Zuli, L. Xingao and Z. Anyou, “Effect of N2-Gas Par- tial Pressure on the Structure and Properties of Copper Nitride Films by DC Reactive Magnetron Sputtering,” Plasma Science and Technology, Vol. 9, No. 2, 2007, p. 147. doi:10.1088/1009-0630/9/2/06
[10] M. Asano, K. Umeda and A. Tasaki, “Cu3N Thin Film for a New Light Recording Media,” Japanese Journal of Ap- plied Physics, Vol. 29, 1990, pp. 1985-1986. doi:10.1143/JJAP.29.1985
[11] T. Maruyama and T. Morishita, “Copper Nitride and Tin Nitride Thin Films for Write-Once Optical Recording Media,” Applied Physics Letters, Vol. 69, 1996, p. 890. doi:10.1063/1.117978
[12] R. Cremer, M. Witthaut and D. Neuschutz, “Deposition and Characterization of Metastable Cu3N Layers for Ap- plications in Optical Data Storage,” Microchimica Acta, Vol. 133, No. 1-4, 2000, pp. 299-302. doi:10.1007/s006040070109
[13] L. Maya, “Deposition of Crystalline Binary Nitride Films of Tin, Copper, and Nickel by Reactive Sputtering,” Journal of Vacuum Science & Technology A, Vol. 11, No. 3, 1993, p. 604. doi:10.1116/1.578778
[14] D. M. Borsa, S. Grachev, C. Presura and D. O. Boerma, “Growth and Properties of Cu3N Films and Cu3N/γ′- Fe4N Bilayers,” Applied Physics Letters, Vol. 80, No. 10, 2002, pp. 1823-1825 doi:10.1063/1.1459116
[15] U. Hahn and W. Weber, “Electronic Structure and Che- mical-Bonding Mechanism of Cu3N, Cui3NPd, and Re- lated Cu(I) Compounds,” Physical Review B, Vol. 53, No. 19, 1996, pp. 12684-12693. doi:10.1103/PhysRevB.53.12684
[16] M. G. Moreno-Armenta, W. L. Perez and N. Takeuchi, “First-Principles Calculations of the Structural and Elec- tronic Properties of Cu3MN Compounds with M = Ni, Cu, Zn, Pd, Ag, and Cd,” Solid State Sciences, Vol. 9, No. 2, 2007, pp. 166-172. doi:10.1016/j.solidstatesciences.2006.12.002
[17] J. Wang, J. T. Chen, X. M., X. M. Yuan, Z. G. Wu, B. B. Miao and P. X. Yan, “Copper Nitride (Cu3N) Thin Films Deposited by RF Magnetron Sputtering,” Journal of Cry- stal Growth, Vol. 286, No. 2, 2006, pp. 407-412. doi:10.1016/j.jcrysgro.2005.10.107
[18] K. V. S. Reddy, S. S. Reddy, P. S. Reddy and S. Uthana, “Copper Nitride Films Deposited by Dc Reactive Magne- tron Sputtering,” Journal of Materials Science: Materials in Electronics, Vol. 18, No. 10, 2007, pp. 1003-1008. doi:10.1007/s10854-007-9120-0
[19] G. H. Yue, P. X. Yan, J. Z. Liu, M. X. Wang, M. Li and X. M. Yuan, “Copper Nitride Thin Film Prepared by Reactive Radio-Frequency Magnetron Sputtering,” Journal of Applied Physics, Vol. 98, No. 10, 2005, p. 103506. doi:10.1063/1.2132507
[20] N. Gordillo, R. Gonzalez-Arrabal, A. Alvarez-Herrero and F. Agullo-Lopez, “Free-carrier Contribution to the Optical Response of N-Rich Cu3N Thin Films,” Journal of Physics D: Applied Physics, Vol. 42, No. 16, 2009, Ar- ticle ID: 165101. doi:10.1088/0022-3727/42/16/165101
[21] T. Maruyama and T. Morishita, “Copper Nitride Thin Films Prepared by Radio-Frequency Reactive Sputtering,” Journal of Applied Physics, Vol. 78, No. 6, 1995, pp. 4104-4107. doi:10.1063/1.359868
[22] K. J. Kim, J. H. Kim and J. H. Kang, “Structural and Optical Characterization of Cu3N Films Prepared by Reac- tive RF Magnetron Sputtering,” Journal of Crystal Growth, Vol. 222, No. 4, 2000, pp. 767-772. doi:10.1016/S0022-0248(00)00968-4
[23] Y. Du, A. L. Ji, L. B. Ma, Y. Q. Wang and Z. X. Cao, “Electrical Conductivity and Photoreflectance of Nano- crystalline Copper Nitride Thin Films Deposited at Low Temperature,” Journal of Crystal Growth, Vol. 280, No. 3-4, 2005, pp. 490-494. doi:10.1016/j.jcrysgro.2005.03.077
[24] J. F. Pierson and D. Horwat, “Addition of Silver in Cop- per Nitride Films Deposited by Reactive Magnetron Sput- tering,” Scripta Materiala, Vol. 58, No. 7, 2008, pp. 568- 570. doi:10.1016/j.scriptamat.2007.11.016
[25] A. Rahmati, H. Bidadi, K. Ahmadi and F. Hadian, “Ti Substituted Nano-Crystalline Cu3N Thin Films,” Journal of Coatings Technology and Research, Vol. 8, No. 2, 2011, pp. 289-297. doi:10.1007/s11998-010-9279-9
[26] A. Rahmati, “Reactive DC Magnetron Sputter Deposited Ti-Cu-N Nano-Composite Thin Films at Nitrogen Ambi- ent,” Vaccum, Vol. 85, No. 9, 2011, pp. 853-860. doi:10.1016/j.vacuum.2010.12.010
[27] J. F. Pierson, D. Wiederkehr and A. Billard, “Reactive Magnetron Sputtering of Copper, Silver, and Gold,” Thin Solid Films, Vol. 478, No. 1-2, 2005, pp. 196-205. doi:10.1016/j.tsf.2004.10.043
[28] I. S. Kim and P. N. Kumta, ?Hydrazide Sol-Gel Process: A Novel Approach, for Synthesizing Nanostructured Titanium Nitride,” Materials Science and Engineering: B, Vol. 98, No. 2, 2003, pp. 123-134. doi:10.1016/S0921-5107(02)00595-0
[29] B. Subramanian, K. Ashok and M. Jayachandran, “Effect of Substrate Temperature on the Structural Properties of Magnetron Sputtered Titanium Nitride Thin Films with Brush Plated Nickel Interlayer on Mild Steel,” Applied Surface Science, Vol. 255, No. 5, 2008, pp. 2133-2138. doi:10.1016/j.apsusc.2008.07.083
[30] Z. Wang, S. A. Cohen, D. N. Ruzic and M. Goeckner, “Nitrogen Atom Energy Distribution in a Hollow-Cath- ode Planar Sputtering Magnetron,” Journal of Physical Review E, Vol. 61, No. 2, 2000, pp. 1904-1911.
[31] A. Rahmati, H. Bidadi, K. Ahmadi and F. Hadian, “Reac- tive DC Magnetron Sputter Deposited Titanium-Copper- Nitrogen Nano-Composite Thin Films with an Argon/ Nitrogen Gas Mixture,” Plasma Science and Technology, Vol. 12, No. 6, 2010, pp. 1-7. doi:10.1088/1009-0630/12/6/09
[32] J. F. Pierson, “Structure and Properties of Copper Nitride Films Formed by Reactive Magnetron Sputtering,” Vac- uum, Vol. 66, No. 1, 2002, pp. 59-64. doi:10.1016/S0042-207X(01)00425-0
[33] X. Y. Fan , Z. G. Wu and G. A. Zhang, “Ti Dopped Copper Nitride Films Deposited by Cylindrical Magnetron Sputtering,” Journal of Alloys and Compounds, Vol. 440, 2007, p. 54.
[34] J. L. Vossen and W. Kern, “Thin Film Process II,” Aca- demic Press, New York, 1991, pp. 181- 186.
[35] J. A. Thornton, “The Microstructure of Sputter-Deposited Coatings,” Journal of Vacuum Science & Technology A, Vol. 4, No. 6, 1986, pp. 3059-3065. doi:10.1116/1.573628
[36] S. Mahieu and D. Depla, “Reactive Sputter Deposition of TiN Layers: Modelling the Growth by Characterization of Particle Fluxes towards the Substrate,” Journal of Physics D: Applied Physics, Vol. 42, No. 5, 2009, Article ID: 053 002. doi:10.1088/0022-3727/42/5/053002
[37] R. Behrisch and W. Eckstein, “Sputtering by Particle Bombardment, Experiments and Computer Calculations from Threshold to MeV Energies,” Spriger, New York, 2007.
[38] Y. Yamamura, T. Takiguchi and M. Ishida, “Energy and Angular Distributions of Sputtered Atoms at Normal In- cadence,” Radiation Effects and Defects in Solids, Vol. 118, No. 3, 1991, pp. 237-261. doi:10.1080/10420159108221362
[39] L. R. Shaginyan, Y. I. Kim, J. G. Han, N. V. Britun, J. Musil and I. V. Belousov, “Novel Model for Film Growth Based on Surface Temperature Developing during Magnetron Sputtering,” Surface and Coatings Technology, Vol. 202, No. 3, 2007, pp. 486-493. doi:10.1016/j.surfcoat.2007.06.016
[40] M. Delfino, J. A. Fair and D. Hodul, “X-Ray Photoemis- sion Spectra of Reactively Sputtered TiN,” Journal of Applied Physics, Vol. 71, 1992, pp. 6079-6085. doi:10.1063/1.350465
[41] E. G. Birgin, I. Chambouleyron and J. M. Mart?nez, “Es- timation of the Optical Constants and the Thickness of Thin Films Using Unconstrained Optimization,” Journal of Computational Physics, Vol. 151, No. 2, 1999, pp. 862-990. doi:10.1006/jcph.1999.6224
[42] D. Poelman and P. F. Smet, “Methods for the Determina- tion of the Optical Constants of Thin Films from Single Transmission Measurements: A Critical Review,” Jour- nal of Physics D: Applied Physics, Vol. 36, No. 15, 2003, p. 1850. doi:10.1088/0022-3727/36/15/316

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.