Share This Article:

MHD Stagnation Point Flow and Heat Transfer over a Permeable Surface

Abstract Full-Text HTML XML Download Download as PDF (Size:785KB) PP. 50-55
DOI: 10.4236/eng.2013.51008    4,445 Downloads   6,312 Views   Citations

ABSTRACT

The steady two-dimensional, laminar flow of a viscous, incompressible, electrically conducting fluid near a stagnation point with heat transfer over a permeable surface in the presence of a uniform magnetic field is considered. Taking suitable similarity variables, the governing boundary layer equations are transformed to ordinary differential equations and solved numerically by Shooting method. The effects of the suction parameter, the magnetic parameter, the Prandtl number and the Eckert number are studied on the velocity and temperature distributions.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Chaudhary and P. Kumar, "MHD Stagnation Point Flow and Heat Transfer over a Permeable Surface," Engineering, Vol. 5 No. 1, 2013, pp. 50-55. doi: 10.4236/eng.2013.51008.

References

[1] L. J. Crane, “Flow Past a Stretching Plate,” Zeitschrift für Angewandte Mathematik und Physik, Vol. 21, No. 4, 1970, pp. 645-647. doi:10.1007/BF01587695
[2] P. S. Gupta and A. S. Gupta, “Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing,” Canadian Journal of Chemical Engineering, Vol. 55, No. 6, 1977, pp. 744-746. doi:10.1002/cjce.5450550619
[3] P. Carragher and L. J. Crane, “Heat Transfer on a Continuous Stretching Sheet,” Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 62, No. 10, 1982, pp. 564-573. doi:10.1002/zamm.19820621009
[4] T. C. Chiam, “Stagnation-Point Flow towards a Stretching Plate,” Journal of the Physical Society of Japan, Vol. 63, 1994, pp. 2443-2444. doi:10.1143/JPSJ.63.2443
[5] E. Magyari and B. Keller, “Exact Solutions for Self Similar Boundary-Layer Flows Induced by Permeable Stretching Surfaces,” European Journal of Mechanics— B/Fluids, Vol. 19, No. 1, 2000, pp. 109-122. doi:10.1016/S0997-7546(00)00104-7
[6] T. R. Mahapatra and A. S. Gupta, “Heat Transfer in Stagnation-Point Flow towards a Stretching Sheet,” Heat and Mass Transfer, Vol. 38, No. 6, 2002, pp. 517-521. doi:10.1007/s002310100215
[7] E. M. A. Elbashbeshy and M. A. A. Bazid, “Heat Transfer over an Unsteady Stretching Surface with Internal Heat Generation,” Applied Mathematics and Computation, Vol. 138, No. 2-3, 2003, pp. 239-245. doi:10.1016/S0096-3003(02)00106-6
[8] S. J. Liao and I. Pop, “On Explicit Analytic Solutions of Boundary Layer Equations about Flow in Porous Medium or for a Stretching Wall,” International Journal of Heat and Mass Transfer, Vol. 47, No. 1, 2004, pp. 75-85. doi:10.1016/S0017-9310(03)00405-8
[9] R. N. Jat and S. Chaudhary, “MHD Stagnation Flows with Slip,” Il Nuovo Cimento, Vol. 122B, No. 8, 2007, pp. 823-831.
[10] R. N. Jat and S. Chaudhary, “Magnetohydrodynamic Boundary Layer Flow near the Stagnation Point of a Stretching Sheet,” Il Nuovo Cimento, Vol. 123B, No. 5, 2008, pp. 555-566.
[11] K. Bhattacharyya and G. C. Layek, “Effects of Suction/ Blowing on Steady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Shrinking Sheet with Thermal Radiation,” International Journal of Heat and Mass Transfer, Vol. 54, No. 1-3, 2011, pp. 302-307. doi:10.1016/j.ijheatmasstransfer.2010.09.043

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.